IMAGING OF THE POST-OPEARATIVE SPINE

Arvin Hariri
University of California San Diego
Osteoradiology Fellowship Presentation
Functions of the Spine

- Provides stability and allows for motion
- Protects spinal canal and nerves
- Acts as shock absorber for load bearing
- Structural foundation for head, shoulders, and pelvic girdle
Five Basic Spine Movements

- Flexion
- Extension
- Rotation
- Lateral Bending
- Axial Loading
General Indications for Spine Surgery

- Degenerative deformities
 - Spondylolisthesis, disk disease, inflammatory/degenerative arthritis, spinal stenosis

- Trauma

- Infection

- Tumor

- Congenital anomalies
 - Spinal stenosis, spondylolysis/listhesis
Instability of the Spine

- Clinically determined
- In trauma, can be suggested by radiologists based on Denis’ three column model
- More objective checklists have also been developed based on ligament transection experiments
 - Modified with results from other laboratory experiments and clinical observations
- Criteria not universally agreed upon
Denis’ Three Column Model

- **Anterior**
 - ALL
 - Ant 2/3 of vertebral body + annulus fibrosis/nucleus pulposis

- **Middle**
 - Post 1/3 of vertebral body + annulus fibrosis/nucleus pulposis
 - PLL

- **Posterior**
 - Pedicles
 - Facets
 - Ligamentum flavum
 - Interspinous and supraspinous ligs
Denis’ Three Column Model

- **Anterior**
 - ALL
 - Ant 2/3 of vertebral body + annulus fibrosis/nucleus pulposis

- **Middle**
 - Post 1/3 of vertebral body + annulus fibrosis/nucleus pulposis
 - PLL

- **Posterior**
 - Pedicles
 - Facets
 - Ligamentum flavum
 - Interspinous and supraspinous ligs
Denis’ Three Column Model

- Generally, if 2 of 3 columns fail, spine considered unstable
- Functions of Columns:
 - Anterior
 - Bear axial load
 - Resist extension
 - Middle
 - Resist flexion
 - Bears some axial load
 - Posterior
 - Resist flexion
 - Provide stability during rotation and lateral bending
C-spine Instability Checklist

ELEMENT (Points)
- Anterior elements destroyed/unable to fxn (2)
- Posterior elements destroyed/unable to fxn (2)
- Positive stretch test: > 1.7 mm w/ head distraction (2)
- Radiographic criteria (2 each)
 - Flex-ex XR’s: (1) sag plane transl >3.5 mm or 20%, (2) sag plane rotation >20 degrees
 - Resting XR’s: (1) sag plane displ >3.5 mm or 20%, (2) rel sag plane angulation >11 degrees
- Abnl disc narrowing (1)
- Developmentally narrow (<13 mm) spinal canal (1)
- Spinal cord or nerve root injury (1 each)
- Dangerous loading anticipated (1)

*5 or more points considered unstable
T-spine Instability Checklist

ELEMENT (Points)
- Anterior elements destroyed/unable to fxn (2)
- Posterior elements destroyed/unable to fxn (2)
- Radiographic criteria (2 each)
 - (1) sag plane displ >2.5 mm, (2) rel sag plane angulation > 5 degrees
- Spinal cord or cauda equina damage (2)
- Disruption of costovertebral articulations (1)
- Dangerous loading anticipated (1)

*5 or more points considered unstable
L-spine Instability Checklist

ELEMENT (Points)

- Anterior elements destroyed/unable to fxn (2)
- Posterior elements destroyed/unable to fxn (2)
- Radiographic criteria (2 each)
 - Flex-ex XR’s: (1) sag plane transl >4.5 mm or 15% (2) sag plane rotation (a) >15 degrees at L1-2 through L3-4, (b) >20 degrees at L4-5, and >25 degrees at L5-S1
 - Resting XR’s: (1) sag plane displ >4.5 mm or 15%, (2) rel sag plane angulation >22 degrees
- Cauda equina damage (1)
- Dangerous loading anticipated (1)

5 or more points considered unstable
Basic Principles of Spine Surgery

- Purpose to achieve bony fusion and stabilize spine
- Internal fixators/hardware
 - Provide and maintain anatomic reduction
 - Temporary, will eventually fail or loosen
 - Decrease the risk of pseudoarthrosis
 - More effective than immobilization/external bracing
 - Decrease recovery time and need for bed rest
Implant Failure

- Can be immediate or delayed

- Immediate
 - Load applied to implant exceeds static strength of implant

- Delayed
 - Much more common than immediate
 - Due to cumulative damage related to critical loading

- Average spine undergoes 3 million cycles/yr
Types of Implants

- Multisegmental Fixation Implants
 - 1. Anchors
 - 2. Longitudinal members
 - 3. Cross-connectors
 - 4. Accessories

- Abutting Implants
Anchors

- Penetrating
 - Screws
 - Staples
 - Nails
 - Spikes

- Gripping
 - Hooks
 - Wires
Screws

- Penetrating implants with pullout resistance
- Pullout resistance dependent on qualities of the following:
 - Screw
 - Bone
 - Surgical placement
Anatomy of a Screw

- Total Length
- Thread Length
- Core Diameter
- Thread Diameter
- Thread Height
- Pitch
Anatomy of a Screw

- Pullout resistance dependent upon volume and quality of bone between threads
- Can increase pullout resistance by
 - Increasing thread depth/diameter or thread length
 - Increasing pitch
 - Stronger bone (ie cortical bone)
 - Cortical penetration
 - Triangulation
 - Toed-in and toed-out demonstrate equally increased pullout resistance
 - Toed-out resists axial loads more than toed-in
Types of screws

- Cortical
- Cancellous
- Lag
- Knoringer
Types of spine screws

- Cortical screws have smaller thread and must be pre-tapped
- Cancellous screws have larger threads
- Lag screws have threaded end and smooth neck/shank
 - Pull fragments together
 - Same effect by overtapping proximal bone
- Knoringer screws are threaded on both ends, with smooth shaft in middle
 - Different pitch on two threaded ends
 - Differential advanced of threaded portions results in compression
Triangulation
Screw Fixation by Levels

- Transcortical
 - Anterior screws at any level

- Lateral mass screws
 - C1, C3-C7

- Laminar screws
 - Cross diagonally
 - Uncommon, can be seen at any level, often C2

- Pars/Transpedicular screws
 - Definition of pars vs pedicle screw is dependent on depth of screw penetration
 - C2, entire thoracic and lumbar spine
 - C3-C7, but more often lateral mass screws at these levels

- Facet screws
 - Uncommon, and placed across facet joints

- Of note, placement of lateral mass or pedicle screws at C7 is difficult
Screw Fixation by Levels

- C₁
 - Lateral masses
- C₂
 - Pedicles
- C₃-C₆
 - Lateral masses
- C₇
 - Lateral masses > Pedicles
 - Lateral masses smaller at this level than C₃-C₆
 - Level often skipped
- T-spine + L-spine
 - Pedicles
Screw Fixation Types

- Pedicle Screw:
Screw Fixation Types

- Lateral Mass Screw:
Screw Fixation Types

- Laminar Screw:
Screw Fixation Types

- Facet Screw:
Screw Fixation Types

- Cortical Screw:
Screw Fixation Types

- Transarticular Screw:
 - Often placed from C2->C1
 - Technically difficult
Screw Fixation Types
Surgical Approaches by Levels

- Anterior approach
 - “Anterior” defined as anterior to cord
 - Includes lateral VB hardware in T+L spine
 - Increased morbidity and technical difficulty as must traverse neck, chest, or abdomen
 - Well defined landmarks exist for spine surgeons in neck
 - In chest/abdomen, often requires help of separate surgeon
Surgical Approaches by Levels

- Anterior approach
 - Preferred in C-spine because pathology is primarily discogenic
 - Can access disc directly, as opposed to attacking problem indirectly by posterior decompression
 - Lordosis an early degenerative change in C-spine, and can be corrected with bone graft
Surgical Approaches by Levels

- Posterior approach
 - Preferred in thoracic and lumbar spine, as no need to traverse anterior organs
 - Of note, the spinal cord can not be moved at all, so disc can only be accessed posteriorly below cauda equina at L1-2
Anchors

- Penetrating
 - Screws
 - Staples
 - Nails
 - Spikes

- Gripping
 - Hooks
 - Wires
Anchors – Penetrating

- Staples
 - Can be placed across growth plate to decrease growth
Anchors – Gripping

- Hooks
 - Usually hook around lamina
 - Can be upgoing or downgoing
 - If both types seen at one level, called claw mechanism
 - Can place transverse process or pedicle hooks
 - Better in osteopenic patients than screws
Anchors – Gripping

- Hooks
Anchors – Gripping

- Wires
 - Wires can directly fixate portions of the spine, or can attach to rods
 - Commonly attached to rods (Harrington, Luque, Cotrel-Debousset), Hartshill rectangles, etc
 - Very good at limiting flexion
 - Poor at limiting rotation and treating patients with compression of anterior thecal sac
 - Typically made of 20 gauge stainless steel
 - Primarily used in C-spine
Four common techniques to attach wire to rods:

- A: Sublaminar (double strand)
- B: Interspinous
- C: Sublaminar Songer cable
- D: Subpars
Wires

- Sublaminar wires passed under lamina at each level blindly, w/ risk of possible damage to thecal sac
- Drummond system
 - Interspinous wires: passed through spinous processes and secured w/ buttons on each side of the spinous process
Wires

- **Songer cables**
 - Braided titanium or stainless steel
 - More pliable than wire
 - Held in place by metal crimp/collar
Wires

- Interspinous wires
Longitudinal Members

- Plates – 3 major types of screw-plate connectors
 - Constrained
 - Semiconstrained
 - Axially dynamic connectors

- Rods
 - Multiple different types of rods
Constrained Screw-Plate Connectors

- Screw rigidly fixed to plate
- Does not permit significant subsidence
- Typically fail due to three problems
 - Construct failure
 - Implant bending, kickout, bone graft fracture
 - Implant fracture
 - Screw fx: Head if fixed core. Mid-screw if ramped.
 - Plate fx: Transverse in mid plate.
 - Stress shielding
 - Prevents fusion
Constrained Screw-Plate Connectors

- Strategies to rigidly fix screw to plate:
 - Expansion heads
 - Cam Locks
 - Screw head securing mechanisms
 - Locking plates
 - Screw with thread beneath neck to attach to plate
Constrained Screw-Plate Connectors

- Morscher Plate
 - Screw cap that locks plate and screws together
 - Screws have characteristic fenestrations
Semiconstrained Screw-Plate Connectors

- Screw used to approximate plate to bone
- Not rigidly affixed to plate
- Allow for toggling of screw in plate
- Therefore, allow for bone formation and fusion by permitting axial stress

Examples:
- Caspar plates
- Dynamic compression plates
- Lateral mass fixators
Semiconstrained Screw-Plate Connectors

- Caspar Plate
Semi-constrained Screw-Plate Connectors

- Dynamic Compression Plates
Semiconstrained Screw-Plate Connectors

- Steffee Plates
Semiconstrained Screw-Plate Connectors

- **Haid Plates**
 - Made of titanium
 - Less severe artifact than stainless steel d/t its lower x-ray attenuation coefficient
 - Concave plate, fixation of lateral masses
Semiconstrained Screw-Plate Connectors

- Spinous Process Plates
Semiconstrained Screw-Plate Connectors

- Malleable Reconstruction Plates
Axially Dynamic Screw-Plate Connectors

- Allow for axial deformation
- Resist toggle in coronal and sagittal planes
- Include absorbable implants and deforming implants

Types:
- DOC Ventral Stabilization System by Depuy-AcroMed
- Advanced Biomechanical Concept (ABC) by Aesculap
Screw-Plate Connectors

- Radiologic distinction between different types of screw-plate connectors has not been studied in detail at this time
- Complications are different
 - Constrained more likely to result in poor bony fusion and implant fracture
 - Semiconstrained and axially dynamic more likely to result in loosening
Rods

- Previously
 - Harrington
 - Knodt
 - Luque
 - Cottrell-Debousset
 - Attached with hooks or screws
 - Scottish Rite Hospital

- Current
 - Segmental Instrumentation Rods
 - Growing Rods/Telescopinng Growth Rods
Rods

- Harrington
 - Attached with hooks, wires
 - Smooth rod w/ ratcheted end
 - Can be distracting or compressing
 - Typically, ratcheted end is superior w/ distracting rods
 - Device is placed, and increased distraction achieved by tightening ratcheted end
 - Typically fracture at junction of ratcheted and smooth portions
 - Rotation of rod about its round base can cause slippage of hooks
Rods – Harrington Rod
Rods

- Knodt
 - Attached to hooks
 - Threaded distraction rod w/ central fixed nut/turnbuckle (characteristic feature)
 - Two ends threaded in opposite directions
 - Result in distraction when tightened
Rods – Knodt Rod
Rods

- **Luque**
 - Smooth rod
 - Attached with wires
 - Rotational and translational stability
 - Does not produce distraction or resist axial loading
- **Galveston technique**
 - Pelvic extension of rods into iliac bones
 - Usually single rod curved back on itself superiorly
Luque Rod
Rods

- Luque Rectangle
 - Variation of Luque rod
 - Stiffer that separate rods and more stability, especially with rotational forces
 - Drawback is lack of substantial structural support
Luque Rectangle
Rods

- Hartshill Rectangle
 - Similar appearance and function to Luque rectangle
 - Has additional bends in upper and lower ends to accommodate posterior spine anatomy
Rods – Hartshill Rectangle
Rods

- Cotrel-Debousset
 - Serrated surface
 - Attached to rods or hooks
 - Fixed screw or set screw
Rods – Cotrel-Debousset
Rods

- Texas Scottish Rite Hospital Hardware
 - Nuts/bolts more stable c/w Cotrel-Debousset rods
 - Roughened surface, not serrated
 - Rods cut to desired length, leaving characteristic bevel on one end
 - Other end is hexagonal, can be torqued intra-operatively
Rods – Texas Scottish Rite
Rods

- Growing Rods
 - Fixed proximally and distally
 - Can be two distally fused vertebra and one proximal vertebra
 - Fixed with screws and/or hooks
 - Return to OR every 6 months for extension
 - Possible magnetic adjustment in future
Rods – Growing Rods
Types of Implants

- Multisegmental Fixation Implants
 - 1. Anchors
 - 2. Longitudinal members
 - 3. Cross-connectors
 - 4. Accessories

- Abutting Implants
Cross-Connectors

- Oriented perpendicular to, and adjoining, two longitudinal members
- Increase stiffness and stability
- Long constructs
 - Increase torsional stability
 - Should be placed at 1/3 and 2/3 of length of construct
- Short constructs
 - Decrease sagittal and lateral bar deformity
 - Increased pullout resistance w/ triangulated screws
Cross-Connectors
Types of Implants

- Multisegmental Fixation Implants
 - 1. Anchors
 - 2. Longitudinal members
 - 3. Cross-connectors
 - 4. Accessories

- Abutting Implants
Accessories

- Washers
- Sleeves
 - Increase resistance to rod deformation
Abutting Implants

- Bone graft material
 - Often harvested from rib, fibula, tibia
 - Autograft: harvested from individual receiving the graft
 - Allograft/homograft: harvested from another individual, often cadaver
Abutting Implants

- Can place bone graft in any of 3 compartments
 - Anterior
 - Disc removed
 - Shave down to cartilage of endplates
 - Bone strut placed
 - Middle
 - Transverse processes
 - Posterior
 - Facet joints excised/taken down
 - Spinous processes
 - Laminae
Anterior Compartment Bone Graft
Middle Compartment Bone Graft
Posterior Compartment Bone Graft
Anterior Abutting Implants

- **Definitions**
 - **Struts**
 - Any device placed b/w vertebral bodies
 - Can occur w/ or w/o corpectomy
 - Function as spacers
 - May be
 - Bone graft
 - Cage filled w/ bone
 - Inert material (metal, ceramic)
 - **Cage**
 - Can be made of
 - Titanium
 - Harms cage, Ray cage, Pyramesh cage, InterFix cage, lordotic LT cage
 - Carbon fiber
 - Brantigan cage
 - PEEK or PEEK/Carbon fiber mixture
Metal Cages

Synex Cage

Moss Cage
Metal Cages

Harms Cage
Metal Cages

Bagby & Kuslich
Brantigan Cage
Methylmethacrylate Strut
Special Types of Hardware

- Zero profile fusion
 - Less protrusion of prosthesis reduces secondary dysphagia or impingement on vascular structures
Special Types of Hardware

- Disc Replacement
 - Pain believed to be primarily from disc
 - Contraindicated in pts w/ facet joint degeneration
 - Must have at least 4 mm disc space and no endplate sclerosis
 - Two parallel metal plates w/ teeth and polyethylene core b/w plates
Special Types of Hardware

- Disc Replacement - ProDisc
Special Types of Hardware

- Disc Replacement - SB Charite
Special Types of Hardware

- SIJ fusion screws
Special Types of Hardware

- SIJ fixation screws
Other Devices

- External Thoracolumbar brace/orthosis
Other Devices

- Transcutaneous Electrical Neural Stimulation (TENS) Unit
 - Intended effect is pain relief through electrical stimulation of spinal canal or nerve roots
 - TENS unit is an externally placed patch like EKG leads
Other Devices

- Dorsal Column Stimulator (DCS) Unit
 - Terminate in epidural/subarachnoid space
Other Devices

- Sacral Nerve Stimulator
 - Bladder dysfunction
Other Devices

- Pain Pump
 - Catheter terminates in subarachnoid space
Other Devices

- Bone Stimulator
 - Increases eventual likelihood of fusion, not speed at which fusion occurs
 - After fusion, battery pack removed and electrodes left behind
 - Electrodes similar to DCS, but terminate in bone graft mass
Examples of Spine Surgeries

- Will now demonstrate aforementioned concepts and hardware with examples from various post-operative spine images
ACDF
Posterior Decompression and Fusion

- Combination of laminectomies and posterior fusion
Posterior Decompression and Fusion

- Combination of laminectomies and posterior fusion
Posterior Decompression and Fusion
Atlantoaxial Stabilization

- Instability d/t RA
 - Prevent flexion, and rotation to lesser extent
Atlantoaxial Stabilization

- Occipitospinal strut w/ posterior wiring
 - Incidental anterior VB ankylosis d/t RA
Dens Fracture Fixation
Dens Fracture Fixation
Laminoplasty

- Open door laminoplasty
 - Unilateral laminectomy and angulation of intact posterior elements
Lower Lumbosacral fixation

- Lumbosacral Spine
 - Transpedicle screws cannot be placed below S2
Pars Fixation

- Wiring of transverse and spinous processes w/ bone graft for pars defects
Pars Fixation
Pedicle Subtraction Osteotomy

- Triangular wedge in vertebral body w/ posterior apex
 - Surgical resection of all elements posterior to pedicles
Lumbar Spine Fusion - Terminology

- Many types of anterior interbody fusions, but approaches vary
- LIF: Lumbar Interbody Fusion
 - XLIF: Lateral approach
 - PLIF: Posterior approach
 - Below L1-2, must move spinal cord
 - ALIF: Anterior
 - Below aortic bifurcation
 - TLIF: Transforaminal
 - Below neuroforamen
Anterior Lumbar Plates
Postoperative Imaging

- Performed to:
 - Assess for osseous fusion
 - Confirm positioning and integrity of instrumentation
 - Detect suspected complications
 - Assess for new or progressive disease
Flexion-Extension Radiographs

- Can assess for instability/motion even in the absence of definite bone graft fusion
Complications

- Operative/Peri-operative
- Implant
- Bone Graft
- Long Term
Complications: Operative/Peri-operative

- Improper level/location
 - Critical role for radiologist to recognize intended surgical location prior to surgery
 - Hardware encroaches on important structures
- Nonphysiologic reconstruction
 - Flat back sx
- Hematoma
- Infection
- Dural tear, pseudomeningocele
- Vascular injury
Complications: Implant

- Instability/poor purchase
- Loosening
- Infection
- Fracture
 - Implant or bone
- Migration/Dislodgement
- Poor inter-implant contact
- Overdistraction
Complications: Bone Graft

- **Failure of fusion**
 - Can have fusion, fibrous union, or pseudoarthrosis (no bony fusion)
 - Fibrous union and pseudoarthrosis both considered failure
 - Should have signs of bridging bone by 6-9 months

- **Poor graft location**
 - Migration, incorrect placement, fusion mass encroaching on spinal canal or nerve roots

- **Harvest site complications**
 - Pelvic fx, infection, hematoma, and nerve, ureter, or SIJ injury
Complications: Long-term

- Adjacent instability/degeneration
 - Fixation/fusion causes problems at adjacent spinal levels
- Infection
- Fracture of fusion mass
- Arachnoiditis
Improper Level
Improper Location
Hematoma
Infection
Implant Loosening
Peri-Implant Infection
Implant Fracture
Implant Fracture
Remotely Fractured Screws
Implant Migration
Implant Dislodgement
Implant Dislodgement
Pseudarthrosis
Criteria for Bridging Osseous Fusion (Young)

- 1: No lucency around implant
- 2: No fx of device, graft, or vertebra
- 3: No sclerotic changes in graft or adj vertebra
- 4: Visible bone formation in/about graft
- 5: Minimal loss of disc height
- 6: <3 degrees of intersegmental position change on flexion/extension views

* Lower rate of pseudoarthrosis w/ posterior than anterior fusion
Poor Graft Location - Extrusion
Poor Graft Location - Extrusion
Adjacent Degenerative Changes
Adjacent Degenerative Changes
Adjacent Instability

- Marked ligamentous instability
Fractured Fusion Mass
Arachnoiditis
References

- Rutherford EE, Tarplett Lj, Davies EM, Harley Jm, King LJ. Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics. 2007 Nov-Dec; 27(6): 1737-49.
References