Imaging of Ulnar Sided Wrist Pain

Federico Discepola
April 1st 2010
Ulnar Sided Wrist Pain

- Often equated with low back pain due to chronic and vague symptomatology
- Can present a diagnostic challenge for hand surgeons and radiologists
- May be accompanied by a history of worker’s compensation claims
- Despite these issues, many patients do have pathologic lesions
- Understanding of clinical findings and pertinent imaging anatomy considerably aids in making accurate diagnoses
Overview

- Osseous Injuries (fractures, and Kienbock’s disease)
- Joint Disease (distal radioulnar joint, and pisotriquetral joint)
- Triangular fibrocartilage complex
- Ulnar impaction/abutment and impingement syndromes
- Tendon pathology (extensor and flexor carpi ulnaris)
- Ulnar nerve and Guyon’s Canal
- Radial and ulnar bursae of the wrist
Osseous Injuries

Triquetral Fractures

- second most common carpal bone fracture after the scaphoid bone
- divided into surface and body fractures

Surface fracture
- dorsal surface fractures predominate
- better evaluated on lateral or oblique projections of the wrist

Mechanism
- contact with the hamate or ulnar styloid process
- ligamentous avulsion fracture in extreme hyperflexion

Treatment
- heal well with 6 weeks of immobilization
- fragment excision is performed for refractory pain
Triquetral Fractures

Surface fracture
Ligamentous Avulsion

1 = Dorsal extrinsic radiotriquetral ligament
2 = Dorsal intrinsic scaphotriquetral ligament
(3 = Dorsal ulnotriquetral ligament)

Triquetral Fractures

Fractures of the body
• rare

Treatment
• heal well with conservative treatment
• surgical stabilization required in cases of perilunate fracture dislocations
Hamate Fractures

- 1.7% of all fractures

- **Hook fracture**
 - direct blow by golf club, baseball bat, racquet
 - may present with median or ulnar nerve symptoms:
 - as hook forms the ulnar border of median nerve and the radial border of Guyon’s canal
 - acts as a pulley for the flexor tendons to the 4th and 5th fingers
 - CT may help distinguish it from an accessory bone
 - progresses to non-union if not immobilized - requires excision

- **Body fracture**
 - generally stable
 - associated with # or # - dislocation of 4th or 5th metacarpal bases
Osseous Injuries

Hamate Fractures

Os Hamulus Proprius
- Small and round

Hook of Hamate Fracture
- Irregular and edematous
Hamate Fractures

Osseous Injuries

Os Hamulus Proprius

Small and round

Hook of Hamate Fracture

Irregular and edematous
Osseous Injuries

Pisiform Fractures

- sesamoid bone enclosed within the flexor carpi ulnaris (FCU)
- uncommon fracture (1%), but high association with other fractures

Mechanism

- direct trauma, or FCU avulsion during forced hyperextension

Complications

- pisotriquetral joint osteoarthrosis
- ulnar nerve injury due to close proximity to the ulnar nerve

Treatment

- conservative
- surgical resection of fragment in cases of chronic pain
Ulnar Variance

Anatomy

• length between the distal end of the ulna and the radius as measured on an AP radiograph in neutral position

Neutral Variance

• 20 % of the load across the wrist is imparted to the ulna

Cerezal L et al. Radiographics 2002; 22: 105-121
Anatomy

Minus Variance

• leads to increased load on radial aspect of the wrist

• TFC is thicker

• abnormalities of the TFC are uncommon

• association with Kienbock’s disease

Cerezal L et al. Radiographics 2002; 22: 105-121
Kienbock’s Disease

• osteonecrosis of the lunate bone
• twice as frequent in men than in women; more common in those 20-40 years of age
• occurs in dominant hand

Causes

• largely unknown
• multiple hypotheses: Mechanical and Vascular
 • Mechanical:
 ✓ ulnar negative variance leads to increased load transmission onto the lunate bone
 ✓ lunate shape – type 1
 ✓ flattened radial inclination

Kienbock’s Disease

Causes

• **Vascular:**

 ✓ limited intraosseous blood

 ✓ 20% have a single palmar artery

 ✓ traumatic interference with circulation occurs from repetitive stress
Kienbock’s Disease

Lichtman’s Four Stages of Osteonecrosis of the Lunate Bone

Stage 1 - MRI very useful for diagnosis

- Normal
- Subtle patchy sclerosis
- Subtle fracture lines
- Patchy low T1 signal and hyperintense stir signal
- May see fracture lines
Kienbock’s Disease

Lichtman’s Four Stages of Osteonecrosis of the Lunate Bone

Stage 2

Sclerosis with a normal shape

+/-

Diffuse low T1 signal and hyperintense stir signal

+/-

Early collapse of the radial aspect of the lunate

Fracture lines may be present
Kienbock’s Disease

Lichtman’s Four Stages of Osteonecrosis of the Lunate Bone

Stage 3

Lunate collapse

Lunate collapse

Elongated lunate bone

T1

Stir
Kienbock’s Disease

Lichtman’s Four Stages of Osteonecrosis of the Lunate Bone

Stage 3 – 3A and 3B

3A:
Lunate collapse
Normal Scaphoid

3B:
Lunate collapse
Scaphoid rotation
Disruption of the scapholunate ligament
Proximal migration of the capitate
Kienbock’s Disease

Lichtman’s Four Stages of Osteonecrosis of the Lunate Bone

Stage 3 – 3A and 3B

3A: Lunate collapse
 Normal Scaphoid

3B: Lunate collapse
 Scaphoid rotation
 Disruption of the scapholunate ligament
 Proximal migration of the capitate
Kienbock’s Disease

Lichtman’s Four Stages of Osteonecrosis of the Lunate Bone

Stage 4

Lunate collapse

Radiocarpal and midcarpal osteoarthrosis

Radiocarpal and midcarpal osteoarthrosis
Kienbock’s Disease

Treatment

Stage 1

Cast Immobilization for 3 months

Kienbock’s Disease

Treatment

Stage 2 and 3A

Joint leveling procedures

Unloading procedures

Vascularization procedures

Stage 2

Stage 3A
Kienbock’s Disease

Treatment

Stage 2 and 3A: Joint leveling procedures

If ulnar – variance:
Radial shortening or ulnar lengthening

If ulnar + variance:
Capitate shortening osteotomy

Kienbock’s Disease

Treatment
Stage 2 and 3A
Vascularized bone graft

Debridement of necrotic bone from the lunate bone
Vascularized bone graft harvested from the distal radius
Bone graft inserted into lunate

Kienbock’s Disease

Treatment

Stage 3B

Scaphotrapeziotrapezoid (STT) Fusion

Proximal Row Carpectomy

Excision of the scaphoid, lunate, and triquetrum

Kienbock’s Disease

Treatment
Stage 4

Proximal Row Carpectomy

Radiocapitate-metacarpal wrist arthrodesis +/- lunate excision

Distal Radioulnar Joint (DRUJ)

Anatomy

Osseous Facets of Distal Radius

• Three facets:
 1) Articular facet
 ✓ covered with hyaline cartilage
 ✓ thickness decreases from center to periphery
 2) Facet of the footprint of the volar distal radioulnar ligament
 ✓ larger than dorsal footprint
 ✓ devoid of cartilage
 3) Facet of the footprint of the dorsal distal radioulnar ligament
 ✓ devoid of cartilage
Distal Radioulnar Joint (DRUJ)

Anatomy

Osseous Facets of Ulnar Head

- Four facets:
 1) Articular
 - covered with hyaline cartilage
 - constant thickness (2 mm)
 2) Volar
 - adjacent to bare area which is devoid of cartilage
 3) Styloid
 - continuous with styloid process of the ulna
 4) ECU
 - only concave facet
Distal Radioulnar Joint (DRUJ)

Anatomy

Osseous Facets of Ulnar Head

- in neutral, the ulnar cartilage is not clearly evident
- cartilage becomes apparent upon supination and pronation
- for optimal assessment of radial and ulnar cartilages, imaging in at least two of the three positions is needed
Distal Radioulnar Joint (DRUJ)

Anatomy

Osseous Facets of Ulnar Head

• in neutral, the ulnar cartilage is not clearly evident

• cartilage becomes apparent upon supination and pronation

• for optimal assessment of radial and ulnar cartilages, imaging in at least two of the three positions is needed

• In pronation, the volar facet and capsule rotate into joint - does not represent cartilage loss

Anatomy

Radial and Ulnar Sides of DRUJ

- cartilage thickness is maximal distally
- osseous bump at proximal end of cartilages
 - site of cartilage loss and osteoarthritis
- bare area present between termination of cartilages and insertion of joint capsule
 - area prone to erosion in inflammatory arthopathies
Distal Radioulnar Joint (DRUJ)

Bare Area

Osteoarthrosis
Distal Radioulnar Joint (DRUJ)

Bare Area
Rheumatoid Arthritis

DRUJ synovitis
Ulnar styloid erosion
ECU tenosynovitis
Distal Radioulnar Joint (DRUJ)

Stability

- involved in pronation and supination of the forearm
- the radius moves with respect to a relatively fixed ulna
- despite this, by convention, instability of the DRUJ is described as ulnar subluxation or dislocation
- structures providing stability to this joint are not agreed upon
 - triangular fibrocartilage
 - dorsal and volar radioulnar ligaments
 - meniscus homologue
 - volar ulnocarpal ligaments (ulnolunate and ulnotriquetral)
 - extensor carpi ulnaris tendon and sheath
 - pronator quadratus and flexor carpi ulnaris muscles
 - annular ligament of the elbow (coronal stability)
 - interosseous membrane of the forearm (longitudinal stability)
Distal Radioulnar Joint (DRUJ)

Instability

• Dorsal instability predominates

Causes:

✓ fractures (Galeazzi, Essex-Lopresti, base of ulnar styloid process)
✓ tendinous and ligamentous injury
✓ inflammatory arthropathies (rheumatoid)
✓ osteoarthritis

Clinical Manifestations:

✓ pain, weakness, loss of forearm rotation, and snapping
✓ dorsal prominence of the ulnar head
✓ diagnosis of DRUJ instability can be a subjective and inaccurate finding on clinical exam
Distal Radioulnar Joint (DRUJ)

Instability

Computed Tomography

- imaging of the wrist in a custom-designed device with a handle grip bar
- ensures forearm position is 70° of pronation and supination
- imaging technique can be applied to both wrists in order to identify DRUJ instability

- **Subluxation ratio:**
 - found to be the simplest technique
 - best inter-observer reliability for measuring translation of the distal radioulnar joint

Distal Radioulnar Joint (DRUJ)

Instability

- for subluxation/dislocation of the DRUJ:
 - volar and dorsal radioulnar ligament injury is usually required
Distal Radioulnar Joint (DRUJ)

Instability

• for subluxation/ dislocation of the DRUJ:
 ✓ volar and dorsal radioulnar ligament injury is usually required
Distal Radioulnar Joint (DRUJ)

Instability

Treatment

• DRUJ pinning

• TFC and ligamentous repair

• pinning of base of ulnar styloid fractures, if present

• chronic instability is met with a salvage procedure such as the Sauvé-Kapandji

Sauvé-Kapandji Procedure

Fusion of the DRUJ

Distal resection of the ulna to preserve forearm rotation

Pisotriquetral Joint (PTJ)

Anatomy

• synovial joint that normally communicates with the radiocarpal compartment (12-18%)

• pisiform bone has been likened to a lever (much like the patella), increasing the force of wrist flexion

• stability of PTJ is dependent on two groups of opposing forces:
 - Ulnar side:
 • flexor carpi ulnaris (FCU)
 • pisometacarpal ligament
 • abductor digiti minimi
 - Radial side:
 • flexor retinaculum
 • pisohamate ligament

• FCU, pisohamate ligament, pisometacarpal ligament are the main stabilizers of the PTJ

Theumann NH, Pfirrmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Radiology. 2002; 222(3):763-70
Pisotriquetral Joint (PTJ)

Anatomy

• synovial joint that normally communicates with the radiocarpal compartment (12-18%)

• pisiform bone has been likened to a lever (much like the patella), increasing the force of wrist flexion

• stability of PTJ is dependent on two groups of opposing forces:
 ✓ Ulnar side:
 • flexor carpi ulnaris (FCU)
 • pisometacarpal ligament
 • abductor digiti minimi
 ✓ Radial side:
 • flexor retinaculum
 • pisohamate ligament

• FCU, pisohamate ligament, pisometacarpal ligament are the main stabilizers of the PTJ

Theumann NH, Pfirrmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Radiology. 2002; 222(3):763-70
Pisotriquetral Joint (PTJ)

Radiographic Anatomy

Lateral x-ray of wrist in neutral position with forearm supinated by 30°

Pisotriquetral Joint (PTJ)

MRI Anatomy

Radial Stabilizers
✓ flexor retinaculum
✓ pisohamate ligament

FCU fibers and pisohamate ligament
Pisotriquetral Joint (PTJ)

MRI Anatomy

Ulnar Stabilizers

✓ FCU
✓ abductor digiti minimi
✓ pisometacarpal ligament

Coronal T1

Pisohamate ligament

Abductor Digiti Minimi

Pisometacarpal ligament

Axial T1

Hook of hamate

Pisometacarpal ligament

Theumann NH, Pfirmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Radiology. 2002; 222(3):763-70
Pisotriquetral Joint (PTJ)

Instability

• soft tissue failure of stabilizing structures leading to chronic ulnar sided wrist pain

Cause:
✓ acute trauma (fractures)
✓ repetitive microtrauma (racquet sports)

Complications:
✓ distal pisiform dislocation, instability of the PTJ
✓ ulnar nerve irritation in Guyon’s canal
✓ cartilage loss and osteoarthrosis

Clinical:
✓ tenderness over pisiform on clinical exam
✓ paresthesias about ulnar nerve distribution

Treatment:
✓ conservative with immobilization and intra-articular steroid injections
✓ pisiformectomy via a longitudinal split in the FCU for refractory symptoms

Theumann NH, Pfirrmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Radiology. 2002; 222(3):763-70
Pisotriquetral Joint (PTJ)

Focal triquetral and diffuse pisiform full thickness cartilage loss
Triangular Fibrocartilage Complex (TFCC)

Anatomy

- fibrocartilage-ligament complex
- transmits axial load between the carpus and the ulna
- stabilizes the ulnar aspect of the carpus
- plays a role in stabilizing the DRUJ

Components:

- bow tie shaped articular disc (TFC)
- meniscus homologue
- volar ulnolunate and ulnotriquetral ligaments
- volar and dorsal radioulnar ligaments
- (+/-) ulnar collateral ligament
Vascular Supply:

- three main arterial branches:
 - ulnar artery
 - palmar branch of the anterior interosseous artery
 - dorsal branch of the anterior interosseous artery

- supply blood to the periphery of the TFC
- central disc is avascular
Components:

- ✔ bow tie shaped articular disc (TFC)
- ✔ meniscus Homologue
- ✔ volar ulnolunate and ulnotriquetral ligaments
- ✔ volar and dorsal radioulnar ligaments
- ✔ (+/-) ulnar collateral ligament
Triangular Fibrocartilage Complex (TFCC)

Anatomy

Ulnar Variance and TFC Morphology

Positive Variance

TFC thinned

Stretched distally

Arc-shaped between the distal ulna and carpus
Triangular Fibrocartilage Complex (TFCC)

Anatomy

Ulnar Variance and TFC Morphology

Positive Variance
- TFC thinned
- Stretched distally
- Arc-shaped between the distal ulna and carpus

Neutral Variance
- TFC minimally tilted
- Follows the cartilage of the lunate fossa
Triangular Fibrocartilage Complex (TFCC)

Anatomy

Ulnar Variance and TFC Morphology

Positive Variance
- TFC thinned
- Stretched distally
- Arc-shaped between the distal ulna and carpus

Neutral Variance
- TFC minimally tilted
- Follows the cartilage of the lunate fossa

Negative Variance
- TFC thicker, shorter, and more horizontal
Triangular Fibrocartilage Complex (TFCC)

Components:

- ✔ bow tie shaped articular disc (TFC disc proper)
- ✔ meniscus Homologue
- ✔ volar ulnolunate and ulnotriquetral ligaments
- ✔ volar and dorsal radioulnar ligaments
- ✔ (+/-) ulnar collateral ligament
Components:

✓ bow tie shaped articular disc (TFC disc proper)
✓ meniscus Homologue
✓ volar ulnolunate and ulnotriquetral ligaments
✓ volar and dorsal radioulnar ligaments
✓ (+/-) ulnar collateral ligament
Components:

- Bow tie shaped articular disc (TFC disc proper)
- Meniscus Homologue
- Volar ulnolunate and ulnotriquetral ligaments
- Volar and dorsal radioulnar ligaments
- $(+/-)$ Ulnar collateral ligament

Anatomy

Ulnomeniscal Homologue (UMH) Components

• Four components:

1) **Styloid component**
 - between the entrance to the prestyloid recess and the ECU tendon
 - divided into fibrous and vascular parts
 - attaches to the ulnar styloid process

2) **Radioulnar component**

3) **Collateral component**

4) **Distal insertion**
Anatomy

Ulnomeniscal Homologue (UMH) Components

• Four components:

 1) **Styloid component**

 2) **Radioulnar component**
 - merges with the styloid component dorsally and the pre-styloid recess volarly and distally
 - intimate with the radioulnar ligaments

 3) **Collateral component**

 4) **Distal insertion**

Anatomy

Ulnomeniscal Homologue (UMH) Components

- **Four components:**

 1) **Styloid component**

 2) **Radioulnar component**

 3) **Collateral component**
 - Intimate with the triquetrum
 - Fuses with the ulnar collateral ligament ventrally and the ECU tendon sheath dorsally
 - Ulnar collateral ligament complex:
 - Collateral portion of the MH
 - ECU tendon sheath
 - Ulnar collateral ligament

 4) **Distal insertion**
Anatomy

Ulnomeniscal Homologue (UMH) Components

• Four components:
 1) Styloid component
 2) Radioulnar component
 3) Collateral component
 4) Distal insertion
 • attaches to the triquetrum, hamate and fifth MC bones
Triangular Fibrocartilage Complex (TFCC)

15 yo boy with chronic ulnar sided wrist pain. No trauma
Stripping/detachment and possible defect in the ulnar collateral ligamentous complex

15 yo boy with chronic ulnar sided wrist pain. No trauma

Coronal MRA
15 yo boy with chronic ulnar sided wrist pain. No trauma

Triangular Fibrocartilage Complex (TFCC)

Stripping/detachment and possible defect in the collateral portion of the meniscal homologue
Stripping/detachment and possible defect in the collateral portion of the meniscal homologue

15 yo boy with chronic ulnar sided wrist pain. No trauma
Triangular Fibrocartilage Complex (TFCC)

15 yo boy with chronic ulnar sided wrist pain. No trauma

Stripping/detachment and possible defect in the collateral portion of the meniscal homologue
Triangular Fibrocartilage Complex (TFCC)

Ulnomeniscal Homologue (UMH) Injury

• clinical significance largely unknown

• arthroscopic reports of detached “meniscus homologue-like tissue” in cases of normal TFCC and chronic ulnar sided wrist pain

• resection of this tissue led to disappearance of symptoms

Arthroscopic view of the ulnar side of the wrist

Post resection
Triangular Fibrocartilage Complex (TFCC)

MR Imaging - TFCC injuries

Cause:
- acute trauma (FOOSH)
- chronic repetitive microtrauma and elongated ulna
- degenerative

• MRI is very accurate for diagnosing TFCC injuries

• surface coil increases accuracy for injury to finer components of TFCC

• MR arthrography allows identification of communicating vs. noncommunicating defects

• presence of contrast within the DRUJ after radiocarpal injection indicates a communicating defect

• radial sided communicating defects are commonly bilateral and asymptomatic

• noncommunicating defects are ulnar sided and more often symptomatic
Triangular Fibrocartilage Complex (TFCC)

MR Imaging – Palmer Classification of Traumatic TFCC Injuries

1A – Arthroscopic debridement

1B - Suture repair

1C - Suture repair

1D - Arthroscopic re-attachment
MR Imaging

Degenerative injuries (Class 2):

- progressive wear of the TFC
- lunotriquetral (LT) ligament tears
- ulnocarpal/radioulnar cartilage loss

Risk factors:

- chronic repetitive microtrauma
- increased prevalence in those 35 yo and older
- often secondary to ulnar impaction syndrome from an elongated ulna
Triangular Fibrocartilage Complex (TFCC)

MR Imaging – Palmer Classification of Degenerative TFCC Injuries

2A
Triangular Fibrocartilage Complex (TFCC)

MR Imaging – Palmer Classification of Degenerative TFCC Injuries

2A

2B

TFC Attenuation

Lunate cartilage loss

TFC Attenuation
Triangular Fibrocartilage Complex (TFCC)

MR Imaging – Palmer Classification of Degenerative TFCC Injuries

2A

2B

2C

TFC Attenuation

Lunate cartilage loss

TFC Attenuation

TFC defect

Normal
Triangular Fibrocartilage Complex (TFCC)

MR Imaging – Palmer Classification of Degenerative TFCC Injuries

2A: TFC Attenuation
2B: Lunate cartilage loss, TFC Attenuation
2C: Lunate cartilage loss, Normal
2D: Lunotriquetral ligament tear, TFC defect, Lunate cartilage loss
Triangular Fibrocartilage Complex (TFCC)

MR Imaging – Palmer Classification of Degenerative TFCC Injuries

2A

2B

2C

2D

2E
Degenerative injuries (Class 2)

Treatment

- 2A-D lesions are debrided
- 2E lesions undergo resection of the distal ulna (Wafer procedure)
- End-stage 2E lesions undergo salvage procedures:
 - Bowers
 - Darrach
 - Sauvé-Kapandji
MR Imaging

End stage degenerative class 2E injuries – Salvage procedures

Bowers
- Resection of the radial aspect of the ulna
- Flap created from the dorsal portions of the extensor retinaculum and DRUJ capsule
- Flap sutured to volar DRUJ capsule

Darrach
- Resection of the distal ulna

Sauvé-Kapandji
- Fusion of the DRUJ
 - Distal ulnar resection to preserve forearm rotation
Anatomy

Positive Variance

• larger biomechanical forces imparted onto the TFCC

• TFC is thinner in appearance

• associated with:
 ✓ ulnar abutment/impaction syndrome
 ✓ degenerative tears of the TFCC and lunotriquetral ligament
Ulnar Impaction Syndromes

A) Ulnocarpal Abutment/Ulnar Impaction Syndrome

• results from chronic impaction of the ulnar head against the TFCC and the ulnar sided carpal bones

Clinical findings:
✓ swelling and ulnar sided wrist pain
✓ limitation of wrist ROM

Causes:
✓ positive > neutral and negative ulnar variance
✓ shortened radius from a prior fracture/surgery
✓ premature physeal arrest of the distal radius

Radiographic findings:
✓ sclerosis, cystic change, and osteophytosis of the ulnar aspect of the lunate, radial side of the triquetrum, and ulna

MRI findings:
✓ detected earlier than radiographic findings
✓ cartilage degeneration, marrow edema, and subchondral cysts
✓ Injuries of the TFCC and lunotriquetral (LT) ligament

Cerezal L et al. Radiographics 2002; 22: 105-121
Ulnar Impaction Syndromes

A) Ulnocarpal Abutment/Ulnar Impaction Syndrome

- Cystic change
- Irregularity Sclerosis
- MR equivalent of sclerosis
- TFC injury
- Cystic change
- TFC injury
Ulnar Impaction Syndromes

A) Ulnocarpal Abutment/Ulnar Impaction Syndrome

Treatment – Ulnar shorteneing and salvage procedures

Wafer Procedure Darrach Procedure Sauvé-Kapandji Procedure
B) Ulnar Styloid Impaction Syndrome

• results from chronic impaction of the ulnar styloid against the triquetrum

• more common in negative ulnar variance wrists with prominent styloid processes

Causes:
✓ trauma (fracture of the dorsal triquetrum)
✓ repetitive microtrauma

Radiographic Findings:
✓ long ulnar styloid process (> 6 mm)
✓ sclerosis, cystic change, and osteophytosis of the triquetrum, and ulnar styloid

MRI findings:
✓ detected earlier than radiographic findings
✓ synovitis, cartilage degeneration, marrow edema, and subchondral cysts of triquetrum and ulnar styloid
✓ LT ligament and TFC injuries

Cerezal L et al. Radiographics 2002; 22: 105-121
Ulnar Impaction Syndromes

B) Ulnar Styloid Impaction Syndrome

• results from chronic impaction of the ulnar styloid against the triquetrum

• more common in negative ulnar variance wrists with prominent styloid processes

Causes:
✓ trauma (fracture of the dorsal triquetrum)
✓ repetitive microtrauma

Radiographic Findings:
✓ long ulnar styloid process (> 6 mm)
✓ sclerosis, cystic change, and osteophytosis of the triquetrum, and ulnar styloid

MRI findings:
✓ detected earlier than radiographic findings
✓ synovitis, cartilage degeneration, marrow edema, and subchondral cysts of triquetrum and ulnar styloid
✓ LT ligament and TFC injuries

Treatment
Styloid resection

Spare the two most proximal mm so as not to interfere with the TFC laminae

Cerezal L et al. Radiographics 2002; 22: 105-121
Elongation and irregularity of the ulnar styloid process

Lunotriquetral joint degenerative changes

Elongated ulnar styloid process > 6 mm

Boxer with ulnar sided wrist pain

Elongation and irregularity of the ulnar styloid process

B) Ulnar Styloid Impaction Syndrome
Ulnar Impaction Syndromes

B) Ulnar Styloid Impaction Syndrome

Boxer with ulnar sided wrist pain

- Elongated and edematous ulnar styloid process
- Triquetral cartilage loss
- Pisotriquetral joint osteoarthrosis
Ulnar Impaction Syndromes

C) Ulnar Impaction Secondary to Ulnar Styloid Nonunion

Cause:
- nonunion of ulnar styloid process fracture
- fragment abuts the ulnar carpus and irritates the ECU
- tears of the TFC contribute to symptoms

Subdivided into Types 1 and 2
- Type 1:
 - nonunion of the tip of the ulnar styloid process
 - intact TFCC and DRUJ
- Type 2:
 - nonunion of the base of the ulnar styloid process
 - avulsion of the ulnar attachment of the TFCC and unstable DRUJ
Ulnar Impaction Syndromes

C) Ulnar Impaction Secondary to Ulnar Styloid Nonunion

Navy recruit with ulnar sided wrist pain after fall

Injury of the proximal and distal laminae of the TFC

Injury of the proximal and distal laminae of the TFC
Ulnar Impaction Syndromes

C) Ulnar Impaction Secondary to Ulnar Styloid Nonunion

Treatment:

• if symptomatic, proceed to arthroscopy

• probe TFC for failure: looking for a “trampoline effect”

Type 1
- Trampoline effect present
- TFC is intact
- Resect styloid process

Type 2
- Trampoline effect absent
- TFC is damaged
- Ulnar styloid process and TFC are re-inserted into fovea

Cerezal L et al. Radiographics 2002; 22: 105-121
D) Hamatolunate Impingement

- variant articulation between the medial facet of the lunate and the proximal pole of the hamate bone
- seen in up to 50% of cadaveric wrists

Mechanism:
- repeated abrasion between the lunate and hamate bones when in full ulnar deviation
- 3-3.5x more likely to develop cartilage loss of the proximal pole of the hamate bone

Cerezal L et al. Radiographics 2002; 22: 105-121
D) Hamatolunate Impingement

Radiographic Findings:

✓ osteophytosis between the proximal hamate and medial facet of the lunate bone

MRI findings:

✓ bone marrow edema and cartilage loss of the hamate and lunate at the variant articulation site

✓ eventual 4 corner arthrosis can develop
Ulnar Impaction Syndromes

D) Hamatolunate Impingement

Radiographic Findings:

✓ osteophytosis between the proximal hamate and medial facet of the lunate bone

MRI findings:

✓ bone marrow edema and cartilage loss of the hamate and lunate at the variant articulation site

✓ eventual 4 corner arthrosis can develop

Radiographic Findings:

✓ osteophytosis between the proximal hamate and medial facet of the lunate bone

MRI findings:

✓ bone marrow edema and cartilage loss of the hamate and lunate at the variant articulation site

✓ eventual 4 corner arthrosis can develop

Treatment

✓ arthroscopic debridement of damaged cartilage

✓ 4 corner fusion
Ulnar Impingement Syndrome

• condition in which a shortened ulna impinges on the distal radius

• mimics ulnar impaction with excessive pain on pronation/supination of the forearm

Causes:

✓ surgery (Darrach, Bowers, and Sauvé-Kapandji)
✓ growth arrest (Madelung, multiple hereditary exostoses)
✓ erosive osteolysis (rheumatoid arthritis)
Ulnar Impingement Syndrome

- condition in which a shortened ulna impinges on the distal radius
- mimics ulnar impaction with excessive pain on pronation/supination of the forearm

Radiographic Findings:
- negative ulnar variance
- distal aspect of the ulna no longer articulates with the sigmoid notch of the radius
- scalloping/erosion of the ulnar aspect of the distal radius

Cerezal L et al. Radiographics 2002; 22: 105-121
Extensor Carpi Ulnaris (ECU)

Anatomy

• **ECU origin: Two heads**
 ✓ **common head** originating from the lateral epicondyle of the humerus
 ✓ **ulnar head** originating from the posterior aspect of the mid ulna

• **Insertion:**
 ✓ ulnar aspect of the base of the 5th MC bone

• **Function :**
 ✓ extension and ulnar deviation of the wrist joint
Extensor Carpi Ulnaris (ECU)

Anatomy

Course

• rests in the sixth extensor compartment along a groove in the ulna

• maintained in its ulnar groove by the ECU subsheath and the extensor retinaculum

• ECU subsheath:
 ✓ 2 cm fibro-osseous tunnel that encircles the ECU
 ✓ formed by duplication of the deep antebrachial fascia
 ✓ inserts on the ulna and its styloid
 ✓ merges with the DRUJ proximally and the TFC distally

• Extensor retinaculum
 ✓ passes above the ECU subsheath like a bridge
 ✓ inserts on the volar aspects of the pisiform and triquetral bones

In normal wrists, the ECU may be partially displaced in the:

- dorsal direction with supination and wrist extension
- volar direction with pronation and wrist flexion
Extensor Carpi Ulnaris Disorders

ECU Tendinopathy

Tendinosis, Tenosynovitis, Tears, Subluxation/Dislocation

Symptoms:
- local pain, swelling, or clicking/snapping with interruption of ECU subsheath
- can clinically simulate a TFC injury

Causes:
- acute trauma (hypersupination and ulnar deviation)
- chronic repetitive sports-related injuries (tennis, hockey, golf)
- chronic inflammatory processes (rheumatoid arthritis)
Extensor Carpi Ulnaris (ECU)

Tendinosis, Tenosynovitis, Tears, Subluxation/Dislocation

- Chronic repetitive microtrauma

ECU tendinosis and tenosynovitis

ECU tenosynovitis and partial thickness tear
Extensor Carpi Ulnaris (ECU)

Patterns of Traumatic ECU Injuries in Tennis Players

• observed ECU injuries in the non dominant hand of two-handed backhand tennis players

Cause:

✓ damage of the ECU retinaculum was related to changes in anatomical position of the ECU:

• during pronation, the ECU has a direct course to its insertion

• during supination, the ECU adopts a 30° angle to reach its insertion
Extensor Carpi Ulnaris (ECU)

Patterns of Traumatic ECU Injuries in Tennis Players

• Type A
 ✓ ulnar sided tear of the ECU fibro-osseous sheath
 • ECU dislocates
 • returns to the ulnar groove underneath the torn sheath
 • treated with reconstruction of the sheath utilizing a portion of the extensor retinaculum

• Type B
 ✓ radial sided tear of the ECU fibro-osseous sheath
 • ECU dislocates
 • sheath is caught in between the ECU and the distal ulna upon return of the ECU
 • treated with ECU re-location and direct suture of the sheath over the ECU tendon

Extensor Carpi Ulnaris (ECU)

Patterns of Traumatic ECU Injuries in Tennis Players

Tear of central and ulnar aspects of the ECU subsheath (Type A lesion)

ECU tenosynovitis and partial tearing

Ulnar subluxation of the ECU

Extensor Carpi Ulnaris (ECU)

Patterns of Traumatic ECU Injuries in Tennis Players

Tear of central and ulnar aspects of the ECU subsheath (Type A lesion)

ECU tenosynovitis and partial tearing

Ulnar subluxation of the ECU

Treatment

Reconstruction of the ECU subsheath utilizing a portion of the extensor retinaculum

Extensor Carpi Ulnaris (ECU)

Tendinosis, Tenosynovitis, Tears, Subluxation/Dislocation

- Chronic inflammatory processes (rheumatoid arthritis)

Marked ECU inflammatory tenosynovitis

Pannus extending into a partial thickness tear
Flexor Carpi Ulnaris (FCU)

Anatomy

• **FCU origin: Two heads**
 - humeral head arises from the common flexor tendon origin from the medial epicondyle
 - ulnar head arises from the olecranon and posterior aspect of proximal ulna

• **Insertion:**
 - pisiform, hamate, and base of the 5th metacarpal bone

• **Function:**
 - flexion and ulnar deviation of the wrist
 - important stabilizer of the pisotriquetral joint
 - stabilizer of the distal radioulnar joint
Flexor Carpi Ulnaris (ECU)

Tendinopathy

Causes:
✓ repetitive wrist flexion

✓ classified as either calcific (HADD) or non calcific in origin (tendinosis)

✓ FCU is extrasynovial and does not have a surrounding sheath; unable to develop tenosynovitis

Symptoms:
✓ pain with restricted flexion and ulnar deviation

✓ in contrast to pisotriquetral joint (PTJ) osteoarthrosis, the pain from FCU tendinopathy is elicited 3 cm proximal to the pisiform along the palpable tendon

Treatment:
✓ conservative

✓ surgical: FCU debridement (uncommon)
Flexor Carpi Ulnaris (FCU)

Hydroxyapatite Deposition

Likely along the pisohamate ligament

Within the substance of the FCU tendon

Gandee RW et al. AJR. 1979; 133 (6): 1139-41

Thank you Mini

Gandee RW et al. AJR. 1979; 133 (6): 1139-41
Guyon’s Canal

Anatomy

• may become the site of ulnar nerve compression

• fibro-osseous tunnel located along the anterior and medial aspects of the wrist

• extends from the pisiform bone to the hook of the hamate and spans a 4 cm distance

Zeiss et al. AJR; 1992: 1081-1085
Theumann NH, Pfirrmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Radiology. 2002; 222(3):763-70
Ulnar Nerve and Guyon’s Canal

Anatomy

• contains fat, and the ulnar neurovascular bundle

Walls of the canal:
 ✓ consist of the pisiform bone medially and the hook of the hamate laterally

• Floor of the canal:
 ✓ composed of the flexor retinaculum
 ✓ origin of the hypothenar muscles

Roof of the canal
 ✓ flexor retinaculum
 ✓ palmar fascia
 ✓ antebrachial fascia
 ✓ palmaris brevis muscle

Zeiss et al. AJR; 1992: 1081-1085

Theumann NH, Pfirmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Radiology. 2002; 222(3):763-70
Ulnar Nerve and Guyon’s Canal

Anatomy

Proximal portion – Level of the pisiform bone

• ulnar nerve enters the canal medial to the artery

• both structures course through fatty tissue

• ulnar nerve’s average transverse dimension is 3 mm at the level of the pisiform bone

• carries sensory and motor branches

Zeiss et al. AJR; 1992: 1081-1085
Ulnar Nerve and Guyon’s Canal

Anatomy

Distal Portion – Level of the hook of the hamate bone

- ulnar nerve divides into superficial sensory and deep motor branches

 ✓ superficial sensory branch:
 - provides sensation to the 5th finger and the ulnar half of the 4th finger
 - courses within the superficial portion of the canal

 ✓ deep motor branch:
 - the hypothenar muscles
 ✓ abductor digiti minimi,
 ✓ flexor digiti minimi
 ✓ opponens digiti minimi
 - the adductor pollicis
 - the 3rd and 4th lumbricals
 - all of the interossei muscles
Guyon’s Canal Syndrome (Ulnar Tunnel Syndrome)

• compression of the ulnar nerve in Guyon’s canal

Causes:

✓ extrinsic compression:
 • soft tissue masses (ganglion cysts, lipoma, fibrolipomatous hamartoma)
 • PTJ osteophytes
 • anomalous muscles (accessory abductor digiti minimi)
 • ulnar artery aneurysms (hypothenar hammer syndrome)

✓ trauma (pisiform or hamate fractures, cycling)

✓ bursitis

Capitani D et al. J Neurol 2002; 249: 1441-1445
• Three zones of ulnar nerve compression in Guyon’s canal:

• **Zone 1**
 ✓ proximal palmar carpal ligament to ulnar nerve bifurcation
 ✓ cause combined motor/sensory deficits

• **Zone 2**
 ✓ contains the deep motor branch of the ulnar nerve
 ✓ ulnar nerve bifurcation to hypothenar muscular fibrous arch
 ✓ ulnar aspect of the hook of hamate
 ✓ pure motor deficits

• **Zone 3**
 ✓ parallel to zone 2
 ✓ contains the superficial sensory branch of the ulnar nerve
 ✓ radial aspect of the hook of hamate
 ✓ isolated sensory deficits

Guyon’s Canal Syndrome (Ulnar Tunnel Syndrome)

Most common cause of ulnar tunnel syndrome: Ganglion cysts

Ganglion cyst interposed between the ulnar artery and nerve
Radial and Ulnar Bursae of the Wrist

Anatomy

- synovial membrane lined sac-like structures
- localized in the palmocarpal area

Ulnar Bursa:
- larger of the two bursae
- extends from the pronator quadratus muscle through carpal tunnel
- terminates 1-3 cm proximal to the flexor tendon sheaths of the 2nd through 4th fingers
- communicates with the tendon sheath of the flexor digiti minimi (FDM) in majority of cases
Anatomy

• composed of three invaginations that extend about the flexor tendons at the level of the carpal tunnel:

1) **Superficial Extension**

 - situated between the transverse carpal ligament and the flexor digitorum superficialis (FDS) tendons
 - smallest extension
Anatomy

- composed of three invaginations that extend about the flexor tendons at the level of the carpal tunnel:

2) **Middle Extension**

 - located between the FDS tendons and the flexor digitorum profundus (FDP) tendons
Anatomy

- composed of three invaginations that extend about the flexor tendons at the level of the carpal tunnel:

3) **Deep Extension**

✓ dorsal to the FDP tendons

✓ largest extension
Radial and Ulnar Bursae of the Wrist

Anatomy

- **Radial Bursa:**
 - begins at the level of the pronator quadratus muscle
 - extends along the radial aspect of the wrist through the carpal tunnel
 - typically communicates with the tendon sheath of the flexor pollicis longus (FPL)
Radial and Ulnar Bursae of the Wrist

Anatomy

• Typical Communications:

✓ radial bursa and the flexor pollicis longus (FPL) tendon sheath

Anatomy

- Common communications (50-85%):
 - ulnar bursa and the FDM tendon sheath
Anatomy

- **Common communications (50-85%)**:
 - **Intermediate bursa**:
 - communication between radial and ulnar bursae
 - through the deep layer of the ulnar bursa
 - between FDS and FDP of the 2nd fingers
Radial and Ulnar Bursae of the Wrist

Anatomy

• Possible communications:

 ✓ ulnar bursa and tendon sheaths of:

 • 2nd finger
 • 3rd finger
 • 4th finger

Radial and Ulnar Bursae of the Wrist

Typical Figure of Eight or Hourglass Configuration of the Radial and Ulnar Bursae

Radial and Ulnar Bursae of the Wrist

Horseshoe Abscess

Transverse carpal ligament

Radial

Ulnar

Axial T1

Axial C+

Axial T2 FS
Bursitis

- inflammation of the lining of the radial and ulnar bursae

Causes:

- chronic frictional trauma or overuse
- infection (bacterial/mycobacterial/fungal)
- inflammatory arthropathies (rheumatoid or seronegative arthritis)
- sarcoidosis - rare
Bursitis and rice bodies

Causes:

✓ infection (tuberculosis, atypical mycobacterial, and fungal)
✓ inflammatory arthropathies (rheumatoid arthritis)
✓ sarcoidosis - rare

Chau CLF et al. AJR; 2003 (180): 1455-1459
Conclusion

• Ulnar sided wrist pain is a common complaint

• Reviewed many conditions that may contribute to ulnar sided wrist pain

• A surface coil improves imaging quality and the detection of pathology

• Familiarity with clinical findings and pertinent anatomy considerably aids in making accurate diagnoses
Thank you

Happy April fools’ day

Practical Joke regarding Copenhagen’s new metro system

The little guy is not buying it.

4) Stoller, David W. Magnetic Resonance Imaging in Orthopaedics and Sports Medicine, 3rd Edition Copyright ©2007 Lippincott Williams & Wilkins.
Imaging of Ulnar Sided Wrist Pain

Federico Discepola
April 1st 2010
Ulnar Impaction Syndromes

B) Ulnar Styloid Impaction Syndrome

Radiographic Findings:

• Long, volar or radial curved styloid process or a non united ulnar styloid process fracture

• Long ulnar styloid process
• \(\geq 6 \text{ mm} \) or
• ulnar styloid process index (USPI) over 0.22 (styloid length – ulnar variance/ width of ulnar head)

• Subchondral cystic changes in the proximal triquetrum and lunotriquetral joint osteoarthrosis

• Acute impaction can fracture the dorsal aspect of the triquetrum
Ulnar Nerve

Anatomy – Sensory Distribution Proximal To Guyon’s Canal

• Proximal to Guyon’s canal, the ulnar nerve supplies:
 • the skin overlying the dorsal/palmar and ulnar aspects of the hand via dorsal and palmar cutaneous branches
 • loss of sensation in these regions points to a lesion proximal to the wrist and is different from the sensory deficit noted in Guyon’s canal syndrome
Sensory Distribution of the Ulnar Nerve

Ulnar nerve abnormality proximal to Guyon’s canal

- Palmar Cutaneous Branch
- Dorsal Cutaneous Branch

Ulnar nerve abnormality within Guyon’s canal

- Superficial Sensory Branch
- Guyon’s Canal Syndrome
- Superficial Sensory Branch
Triangular Fibrocartilage Complex (TFCC)
MR Imaging – Palmer Classification of Traumatic TFCC Injuries

Palmer class 1A vs 1D
Triangular Fibrocartilage Complex (TFCC)

Anatomy

Ulnomeniscal Homologue (UMH) Variants of the Styloid Component – Wrist Position

- **Narrow-opening of the pre-styloid recess**
 - Radial Deviation

- **Wide-opening of the pre-styloid recess**
 - Radial Deviation

- **No opening of the pre-styloid recess**
 - Ulnar deviation
ECU Tendon Erosion of the Floor of the Sixth Extensor Compartment

• repetitive wrist movements in golf and tennis players

Cause:

✓ disruption of soft tissue which connects the ulnar styloid process to the antebrachial fascia

Complication:

✓ ECU tendon instability
✓ mechanical erosion of the ulna

Treatment

✓ flap of the extensor retinaculum used to cover osseous defect in the ulna
Extensor Carpi Ulnaris (ECU)

ECU Tendon Erosion of the Floor of the Sixth Extensor Compartment

- repetitive wrist movements in golf and tennis players

Cause:
- disruption of soft tissue which connects the ulnar styloid process to the antebrachial fascia

Complication:
- ECU tendon instability
- mechanical erosion of the ulna

Treatment
- flap of the extensor retinaculum used to cover osseous defect in the ulna