Total Hip Arthroplasty:
-component concepts and an overview of normal and abnormal findings

Clark Brixey, M.D.
Inspiration

“Stable alignment. No complications.”
Overview

- Components
 - Materials used
 - Fixation to bone
 - Bearing surfaces

- Post operative radiographic evaluation
 - Normal findings
 - Early
 - Late
 - Pathologic considerations
 - Early
 - Late
Materials

- **Metals**
 - Titanium and titanium alloys (titanium-aluminum-vanadium)—more commonly used today
 - Cobalt-chromium alloys
 - Stainless steel and titanium supporting hardware

- **Cement: space-filler and adhesive**
 - Polymethyl methacrylate (acrylic plastic) mixed with barium

- **Polyethylene: bearing surface lining acetabular component**
 - Ultrahigh molecular weight material also used in bullet-proof vests and lining (“boards”) around hockey rinks.

- **Ceramics: prosthetic femoral heads and acetabular bearing surfaces**
 - Zirconia—more widely known in faux jewelry
 - Alumina—more widely known as ingredient in antacids

Fixation to Bone

- Direct mechanical fixation
 - Internal fixation screws or spikes
- Passive interference fit
 - Tightly fitted components pressed into place (press fit)
- Bone cement
 - Adhesive—gluing component to bone
 - Space-filler contributing to closer interference fit
- Porous ingrowth/ongrowth
 - Remodeling bone attaches directly to component

Types of Replacements

- Bone fixation technique:
 - Cemented
 - Non Cemented
 - Hybrid—combination of cemented and noncemented components

- Bearing surface:
 - Polyethylene
 - Ceramic
 - Metal on metal
 - Combination
Cemented Fixation

- **Benefits**
 - Immediate attachment to bone
 - Early weight bearing
 - Early pain relief
 - Less long term thigh pain

- **Limitations**
 - No integration of bone
 - Some studies report gradual diminution of quality over time

Cementless Fixation

- **Benefits**
 - “Osseointegration”: attachment of lamellar bone to implant

- **Limitations**
 - Integration takes 4-12 wks and may continue up to 3 years
 - Increased reports of thigh pain
 - Stress shielding

Osseointegration: Surface characteristics of an implant

- **Ingrowth:** bone grows inside a porous surface
 - Porous metals
 - Sintered beads—microspheres
 - Fiber mesh coatings

- **Ongrowth:** bone grows onto a roughened surface
 - Grit (abrasive) blasting—may be used as adjunct below mesh or sintered beads
 - Plasma spraying—molten metal powder sprayed on surface

Bearing surfaces

Polyethylene

Metal on metal

Ceramic

Polyethylene

Benefits
- Durable/versatile for most lifestyles
- Long clinical history
- Not toxic

Limitations
- Wear
 - Inflammation/small particle disease
 - Bone loss

Liao, et al, Effects of resin and dose on wear and mechanical properties of cross-linked thermally stabilized UHMWPE, Society for Biomaterials, the 7th World Biomaterials Congress, Sydney, Australia, 2004.
Metal on metal

- **Benefits**
 - Durable/long lasting
 - Low level of wear particles
 - Younger/active patients

- **Limitations**
 - Adverse reaction to metal debris

Ceramic

- **Benefits**
 - Reduced wear
 - Improved lubrication
 - Reduced friction

- **Limitations**
 - More prone to fracture
 - Less forgiving in surgery
 - Chance of squeaking

Postoperative Evaluation

- Normal Findings
 - Early
 - Late
- Pathologic considerations
 - Early
 - Late
Anatomic considerations

Delee and Charnley Zones (acetabular)

Gruen zones (femoral)

Immediate postoperative considerations

- Leg length
- Acetabular inclination/version
- Femoral stem inclination/version
- Femoral tip position
- Material interface/cement mantle
Leg length

- Leg length inequality common after THA
- Up to 27%
- Mean discrepancy 15.9mm
- Up to 10mm thought to be acceptable, but may still be noticeable by patient; may require shoe orthotic
- High source of malpractice

How to measure leg length

- Hips positioned in neutral
- Draw transverse line connecting inferior borders of acetabular teardrops (transverse pelvic axis)
- Lesser trochanter often used as femoral reference point
- Perpendicular line from femoral reference to pelvic reference compared side to side
- Bi-ischial line also described as pelvic reference → rotation of film can make this inaccurate

Woolson ST, et al, Results of a method of leg length equalization for patients undergoing primary total hip replacement, J Arthroplasty, 1999;14:159-64.
Acetabular component position

- Inclination: angle between the acetabular axis (line through medial and lateral cup margins) and the transverse pelvic axis
 - Associated with risk of dislocation
 - Affects range of motion
- McCollum and Grey: safe range 30-50°
- D’Lima: best range of motion: 45-55°

Acetabular component position

- Anteversion: angle between the acetabular axis and the coronal plane
 - Associated with risk of dislocation
 - Affects range of motion
- Rarely calculated by radiologists in day-to-day clinically practice
- Lateral view: exact measurement not possible → degree of angulation affected by pelvic or thigh rotation
- AP view often only view provided
- CT best modality
- Normal range: 5-25°

Anteversion calculation

Anteversion of the Acetabular Cup
Angle of planar anteversion according to the ratios AB/AC and DE/AC (where $AB = X'$ and $DE = Y'$)

Planar anteversion = 13°

Anteversion calculation from AP view

- Metal-backed cup
 - AC unchanged
 - BD is half of Y’

In day-to-day clinical practice, inclination angle most commonly assessed.

Femoral component position

- Goal: stem in neutral position within femoral shaft
- AP view: stem tip should be in center
- Malposition of stem associated with failure
 - Up to 46% failure w/ 16 yr f/u of cemented
 - Correlated with loosening in cementless prostheses

Femoral component position

- Anteversion of neck best assessed on lateral view, but often difficult to evaluate
 - Positioning in elderly or post operative patient
 - Affected by pelvic and thigh rotation
- Femoral anteversion important factor allowing adequate flexion of hip
- Suggested range: 10-15°
- Over-anteversion associated with dislocation
- CT best modality

Material interface (cemented prostheses)

- Assess prosthesis--cement and cement—bone interfaces
 - Thickness
 - Gaps/lucencies
- Deficient cement mantles associated with aseptic loosening and failure of components
- Acetabular mantle 3 mm yield best strain characteristics and reduced loosening risk
 - Sandhu, et al: 78% acetabular components are eccentrically placed with increasing mantle thickness from Delee and Charnley zones I—III (superomedial—inferolateral)
 - Achieving ideal/uniform mantle difficult
- Femoral cement mantle 2-3 mm yield good long term radiographic and clinical outcomes

Material interface (cemented prostheses)

- Assessment of lateral view for cement defects paramount due to common posteriorly angulated prosthesis → thin mantle at posterior tip
- Centralizer may reduce risk of thin mantle around tip

Material interface (cemented prostheses)

- Assessment of lateral view for cement defects paramount due to common posteriorly angulated prosthesis → thin mantle at posterior tip
- Centralizer may reduce risk of thin mantle around tip

Material interface (noncemented prosthesis)

- Assessing initial fixation more difficult
- Initial postoperative radiographs
 - Alignment evaluation
 - Fixation better assessed with serial follow-up radiographs

Radiographic follow-up of THA

- Periprosthetic lucency
- Component subsidence
- Stress shielding
- Stress loading
Periprosthetic lucency--cemented

- Bone—cement interface a thin fibrous layer forms as response to local necrosis from exothermic cement polymerization—stable by 2 yrs
- Acetabular (Delee-Charnley) zone I: 1-2mm lucency frequent
- Lucency at metal—cement interface initially not uncommon, but should remain stable

General Rules:
- Lucency ≤2mm
- Stability over 2 years

-http://www.radiologyassistant.nl/en/431c8258e7ac3
Periprosthetic lucency--noncemented

- Lucencies at metal—bone interface occur typically as combination of bone and fibrous tissue attachment
- Often accompanied by parallel sclerotic line
- Common—80%
- 1-2 mm thickness

General Rules:
- Lucency ≤2 mm
- Stability over 2 years

http://www.radiologyassistant.nl/en/431c8258e7ac3
Component subsidence

- Uncemented stems during initial post operative months
 - Beyond 2 years or 10 mm considered abnormal
- Certain cemented stems
 - Exeter: specifically designed to subside into cement mantle
 - 1-2 mm, seen superolaterally

Stress shielding

- Wolf’s Law: Bone will biomechanically remodel and adapt according to the load placed on it.
- THA:
 - Altered forces about hip lead to areas of decreased mechanical load
 - Decreased osteoblastic activity
 - Areas of relative osteopenia—stress shielding
- Generally occurs in first 2 years following surgery
- Implies prosthesis is well fixed
- Long term implications unknown
Stress shielding

- Often seen at proximal—medial femur
 - Calcar resorption/round off
- Also commonly seen at superomedial acetabulum and about the trochanters

- http://www.radiologyassistant.nl/en/431c8258e7ac3
Stress shielding

Stress loading

- Wolf’s Law similarly applies
- Spot welds: small areas of sclerosis originating from endosteal surface and abutting the femoral stem
 - Strong indicators of stability
- Cortical thickening of femoral shaft indicates good fixation

Stress loading—pedestal

- Bridging sclerosis at the tip of the cementless femoral stem
- Unclear significance
 - Can be associated with loosening
 - Careful evaluation and sequential review of follow-up radiographs recommended

Pathologic considerations

- Early postoperative setting
 - Improper placement/alignment
 - Fracture/dislocation
 - Cement migration
 - Limb length discrepancy
 - Nerve palsy: sciatic, femoral, peroneal
 - Hemarthrosis
 - Vascular injury

- Subacute to remote sequelae
 - Fracture/dislocation
 - Loosening/component migration
 - Polyethylene wear
 - Particle disease
 - Infection
 - Adverse reaction to metal debris
 - Heterotopic ossification
Pathologic considerations

- **Early postoperative setting**
 - Improper placement/alignment
 - Fracture/dislocation
 - Cement migration
 - Limb length discrepancy
 - Nerve palsy: sciatic, femoral, peroneal
 - Hemarthrosis
 - Vascular injury

- **Subacute to remote sequelae**
 - Fracture/dislocation
 - Loosening/component migration
 - Polyethylene wear
 - Particle disease
 - Infection
 - Adverse reaction to metal debris
 - Heterotopic ossification
Fracture—prosthesis

- Hardware failure may consist of metal, ceramic, or polyethylene component fracture/displacement
- Failure of supporting hardware (screws)
- May be related to:
 - Trauma
 - Stress shielding
 - Loosening

Fracture—prosthesis

Fractured stem

Fractured ceramic head

Fracture—prosthesis

Broken, frayed, and disintegrating cerclage cables

Side plate placed for periprosthetic fracture, now broken with loss of reduction of femur fracture

http://www.gentili.net/thr/hardware.htm
Fracture—prosthesis

- Phalanged acetabular cup with interval fracture of the medial phalange.
Fracture—prosthesis

Progressive subsidence with subsequent transcortical screw fracture

http://www.radiologyassistant.nl/en/431c8258e7ac3
Fracture—peri-prosthetic

- **Intraoperative**
 - Femoral shaft most common
 - 2º to pounding femoral component in position
 - Rarely displaced
 - Cerclage cables
 - Pelvis rare
 - DDX:
 - Nutrient foramen; compare w/ preop
 - Controlled perforation during surgery/revision

- **Subacute/remote**
 - Femoral shaft most common
 - Greatest torque
 - Osteopenia from inactivity (pre/post op pain/disability) predispose to insufficiency fractures

http://www.gentili.net
Intra-op periprosthetic fracture

http://www.gentili.net/thr/intraopfx.htm
Intra-op periprosthetic fracture

http://www.gentili.net/thr/intraopfx.htm
Intra-op periprosthetic fracture
-Differential diagnosis

- Controlled perforation of the lateral femoral cortex to facilitate removal of old femoral prosthesis

http://www.gentili.net/thr/intraopfx.htm
Intra-op periprosthetic fracture

-Differential diagnosis

- Vascular channel
 - Best seen on lateral, entering femoral cortex distally and traveling proximally
 - “To the elbow I go, from the knee I flee” – direction of channel

http://www.gentili.net/thr/intraopfx.htm
Periprosthetic fracture at follow-up

Commonly about the tip of the stem
Cement migration

 Intrapelvic through defect in acetabulum most common
 Usually asymptomatic
 Rare complications
 • Bowel fistula
 • Neurovascular encasement
 • Bladder wall burn (exothermic cement polymerization)
Cement migration

Medial extrusion through acetabular wall defect

Cement migration

Extravasation through intraoperative fracture at proximal femur

http://www.gentili.net/thr/cement.htm
Loosening/component migration
- General concepts

- Always compare with baseline/post-op radiograph
- Interface assessment
 - >2 mm, loosening
 - 1-2 mm, acceptable if stable (6-12 mon) and asymptomatic
 - <1 mm acceptable
- Acetabular component
 - Delee-Charnley zone I (superolateral) 1-2 mm lucency at cement—bone interface common
 - Delee-Charnley zone III (inferomedial) lucencies more ominous
- Femoral component
 - Gruen zone I (superolateral) 1-2 mm lucency common and not significant
 - >2 mm abnormal
Loosening/component migration - Cemented prosthesis

- 1-2 mm lucencies at cement interfaces common—if stable
 - Prosthesis—cement: minimal motion during cement hardening
 - Cement—bone: fibrous tissue at interface or minimal motion of prosthesis prior to polymerization

- Loosening:
 - Lucency >2 mm
 - Migration of cemented component/change in alignment
 - Progressive widening of radiolucent zone
 - Cement fracture

Loosening/component migration—cemented prosthesis

- Increased lateral inclination
- Lucency in Delee-Charnley zones II and III
- Upward migration/increased tilting
- Fracture of screw
- Increasing lucency zone II and III
Loosening/component migration—cemented prosthesis

Loosening/component migration—cemented prosthesis

- Abnormal lucency at cement—bone interface surrounding entire femoral component

http://www.gentili.net/thr/loosenin.htm
Loosening/component migration—cemented prosthesis

- Abnormal (>2 mm) lucency at prosthesis—cement interface Gruen zone 1 and borderline (2 mm) lucency at zone 7

Loosening/component migration—cemented prosthesis

Cement fracture

Abnormal lucency

http://www.gentili.net/thr/loosenin.htm
Loosening/component migration
-Cementless prosthesis

- Normal findings:
 - Stress shielding (calcar, trochanters)
 - Complete bone-prosthesis lucency (<2 mm) with sclerotic margin
 - Cortical thickening
 - Mild subsidence (<10 mm, nonprogressive)
- Most reliable signs of loosening
 - Progressive subsidence, migration, or tilt
 - May be subtle: serial radiographs and measurements often required
- Probable signs
 - Bone-prosthesis lucency >2 mm
 - Pedestal formation
 - Endosteal scalloping
 - Bead shedding (separation of microspheres on porous coated prostheses)

Loosening/component migration—cementless prosthesis

>2 mm lucency around prosthesis due abnormal motion

Pedestal formation
Loosening/component migration—cementless prosthesis

Loosening/component migration—cementless prosthesis

- Increasing tilt of acetabular component and new acetabular fracture (arrow)
Loosening/component migration—cementless prosthesis

- Bead shedding from the textured coating of femoral component

Loosening/component migration—cementless prosthesis

- Bead shedding from the textured coating of femoral component

Polyethylene wear

- Creep: normal remodeling in a superomedial direction
- Wear: pathologic thinning in superolateral direction from abnormal loading
- Edge loading: highest loads extend beyond contour of cup; alignment critical
- DDX: polyethylene liner dislocation

http://www.radiologyassistant.nl/en/431c8258e7ac3
Polyethylene wear

- Eccentric position of femoral heads in cups

Polyethylene liner dislocation

- Note eccentric position of femoral head in cup and curvilinear density at inferior margin consistent with dislocated liner

http://www.gentili.net/thr/polyethi.htm
Particle disease

- AKA aggressive granulomatosis or osteolysis
- Particulate debris shed into joint fluid from wear of components
 - Typically bearing surfaces (polyethylene, cement, metal)
- Particles transported through small channels (along screws)
- Macrophages and multinucleated giant cells take up particulate and release cytokines initiating cascade reaction leading to osteolysis
- Tend to occur 1-5 yrs post-op, although may occur at any time

http://www.radiologyassistant.nl/en/431c8258e7ac3
http://www.gentili.net/thr/osteolys.htm
Particle disease

- Radiographs
 - Periprosthetic lucencies
 - May be large
 - Not necessarily indicative of instability
 - Smooth endosteal scalloping
 - No secondary bone response
 - Polyethylene wear (secondary finding)
- Relentlessly progressive → loosening, fracture, destruction of bone
- May necessitate revision, even in absence of symptoms, due to danger of fracture or additional loss of bone stock

http://www.radiologyassistant.nl/en/431c8258e7ac3
http://www.gentili.net/thr/osteolys.htm
Particle disease

- Focal osteolysis with endosteal scalloping in Gruen zone 7
- Eccentric position of femoral head in cup—polyethylene wear

http://www.radiologyassistant.nl/en/431c8258e7ac3
Particle disease

- Eccentric position of femoral head in cup—polyethylene wear
- Focal osteolysis with endosteal scalloping in Delee-Charnley zones I—III with granulomatous soft tissue

Infection

- Incidence: 1-2% primary, 3-4% revision
- Radiographic findings:
 - Ill defined bone resorption
 - Sinus tract/gas in soft tissue or joint
 - No sclerotic margin about lucency
- No definitive findings: can mimic loosening and particle disease
- Additional tests:
 - Blood tests
 - Nuclear medicine
 - Joint aspiration often required for diagnosis
Infection

- Irregular periprosthetic bone resorption with periosteal reaction

http://www.radiologyassistant.nl/en/431c8258e7ac3
Infection

- Periprosthetic soft tissue emphysema and gas in joint

http://www.gentili.net/thr/infectio.htm
Abnormal lucency at cement—prosthesis interface
Differential diagnosis

Loosening vs. particle disease vs. infection

- Diffuse lucencies
 - Suggests loosening or infection
- Multifocal lucencies
 - Suggests particle disease or infection
- Polyethylene wear can suggest particle disease
- No specific finding for or against infection
- Normal radiograph does not exclude infection
- Aspiration required to exclude infection

Adverse reaction to metal debris

- Terminology:
 - Metallosis—macroscopic staining of soft tissues associated with abnormal wear
 - Aseptic lymphocytic vasculitis-associated lesions (ALVAL)—histologic appearance occurring with a range of changes from cellular level only to effusion, soft tissue necrosis, and pseudotumor
 - Pseudotumors—periprosthetic mass (solid and/or cystic), can be symptomatic, resemble neoplasms
 - Adverse reaction to metal debris (ARMD)—umbrella term including metallosis, ALVAL, and pseudotumor

No clear consensus in literature defining boundaries of each term

Adverse reaction to metal debris

- Appeal of MoM
 - Decreased risk of dislocation due to larger head size
 - Higher levels of activity post-op

- ARMD etiology: deposition of metal wear particles in periprosthetic tissues induces spectrum of necrotic and inflammatory changes
 - 2 general theories:
 - Wear-related cellular cytotoxicity
 - Hypersensitivity

- Incidence: 6-18% at mean of 41 months
 - Higher incidence in women: not clear why, possibly smaller prosthetic size

Adverse reaction to metal debris

- **Local effects:**
 - Metal particles released
 - Macrophages phagocytose particles
 - Particles corrode, release cobalt ions, cell death

- **Systemic effects**
 - Increased metal ion level in blood; grossly elevated when implant loose
 - Solid organ deposition
 - Concerns for long-term effects:
 - Immune mediated
 - Genotoxic
 - ? Teratogenic—insufficient data to date

ARMD—Imaging

- Radiograph evaluation similar to other THA
- Cross sectional: required for imaging adjacent soft tissues/periprosthetic mass
 - MRI: metal artifact reduction sequences (MARS) required
 - US: useful due to absence of metal artifact

ARMD—MRI

- Solid (occasionally cystic) lesions usually low T2 signal—metal deposition
- Gadolinium not required—low vascularity of solid components
- Solid lesions tend to be anterior (psoas muscle)
- Predominately cystic lesions tend to arise from posterior joint space
- Lateral lesions often involve trochanteric bursa

57 yo male left hip MoM THA.
Adverse reaction to metal debris

- Incidence: 6-18% at mean of 41 months\(^1\)
- However...
 - Recent nonpublished (submitted) evidence identifies 69% incidence of pseudotumor in DePuy recall imaging of both asymptomatic and symptomatic patients
 - Presence of symptoms was not correlated with presence or size of pseudotumors
 - Only bone marrow edema and tendon tearing were shown to be significant predictors of pain

Heterotopic ossification

- Typically around femoral neck and greater trochanter
- Usually asymptomatic
 - Stiffness most common complaint
 - Pain rare
- Up to 39% THA
- May begin 2-3 weeks post-op with possible ankylosis by 12 wks

http://www.radiologyassistant.nl/en/431c8258e7ac3
Heterotopic ossification

- Brooker and Bowerman classification
 - Class 1: Islands of bone in soft tissues
 - Class 2: >1 cm gap in HO between femur and pelvis
 - Class 3: <1 cm gap
 - Class 4: Bony ankylosis

-http://www.radiologyassistant.nl/en/431c8258e7ac3
Heterotopic ossification

Class 3

Class 3-4
Heterotopic ossification

Class 4—complete ankylosis

http://www.gentili.net/Thr/heteroto.htm
"Hip replacement? He was never hip to begin with."
Special thanks

- Eric Chang, MD
References

- Liao, et al, Effects of resin and dose on wear and mechanical properties of cross-linked thermally stabilized UHMWPE, Society for Biomaterials, the 7th World Biomaterials Congress, Sydney, Australia, 2004.
- Woolson ST, et al, Results of a method of leg length equalization for patients undergoing primary total hip replacement, J Arthroplasty, 1999;14:159-64.
- www.gentili.net/thr
- De la Torre, BJ, et al, 10 years results of an uncemented metaphyseal fit modular stem in elderly patients, Ind J Ortho, 2011;45:4:351-58.