REVIEW OF MUSCULOSKELETAL INJURIES IN
PEDIATRIC NON-ACCIDENTAL TRAUMA

AMOL PATIL, MD. MBBS
The intentional infliction of pain and suffering, both physical and emotional, on children is a distressingly common occurrence.

Categorized as neglect (63%), physical abuse (19%), sexual abuse (10%), and psychologic abuse (8%).

In the United States, approximately

- 702,000 cases reported in 2014
- 1,200 children fatalities
- 1825 cases of abuse / day

Children less than 1 year of age account for 44% of all abuse-related fatalities.
HISTORY
First description of child physical abuse was by the French forensic physician Ambrose Tardieu in 1860.

Battered Child Syndrome (Tardieu Syndrome)
Nurse Admits Shaking Three Babies to Death

They Refused to Take Formulas and Got on Her Nerves, She Explains to Police

August 28, 1956

New Haven, Conn.

Miss Virginia B. Jaspers
On the Theory and Practice of Shaking Infants

Its Potential Residual Effects of Permanent Brain Damage and Mental Retardation

John Caffey, MD, Pittsburgh

In the first modern discussion in 1946 of the parent-infant stress syndrome (PITS), or battered baby syndrome, I described six infants, 13 months or younger, who suffered from the combination of subdural hematomas and characteristic bone lesions. During the last 25 years, substantial evidence, both manifest and circumstantial, has gradually accumulated which suggests that the whiplash-shaking and jerking of abused infants are common causes of the skeletal as well as the cerebrovascular lesions; the latter is the most serious acute complication and by far the most common cause of early death.

Today we invite your attention to line of demarcation between pathogenic and nonpathogenic shaking is often vague.

The nature and distribution of the bone lesions in the PITS must be interpreted from the radiographic changes exclusively because they have not been studied systematically at either surgical exploration or necropsy. The metaphyseal avulsions are the most common of these lesions. Some are small fragments of cortical bone torn off the external edge of the cortical wall at the metaphyseal levels where the periosteum is most tightly bound down to the cortex. In most cases, however, they appear to be small chunks of calcified cartilage which have been broken off the edges.
Chest is compressed resulting in rib fractures
Whiplash movement resulting in the typical 'corner' or 'bucket-handle'-fractures in the metaphyseal region.
Head flails back and forth in a whiplash movement - Intracranial injury
BEHAVIORAL CLUES

• Excessive crying or developmental delay

• Fear, anxiety, clinging

• Phobias

• Nightmares, sleeping problems

• Social withdrawal

• Hyperactivity

• Poor concentration/distractibility
PHYSICAL SIGNS

- Fractures / Dislocations
- Bruising, Bites
- Cigarette burns
- Ear trauma / Lacerations
- Traumatic hair loss
- Retinal hemorrhage
- Head Injury, Subdural hematoma
ROLE OF THE RADIOLOGIST

- Physicians and other allied health professionals are mandated by law in all 50 states and the District of Columbia to report suspected abuse within 48 hours to Children’s Protective Services.

- 31% of confirmed abusive cases were missed on initial presentation and many infants sustained additional injury because of the delay in diagnosis.

- Wide range of findings, which mimic other disease processes.

- First to suggest the diagnosis:
 - High level of suspicion and awareness of the existence of child abuse.
 - Discrepancy between history and severity of fractures.
Mental or physical trauma is central to all cases of child abuse.

Osseous injuries are a major facet of child abuse & radiographic imaging plays a vital role in diagnosis.

Injuries are typically produced as a result of excessive and inappropriate force.
RADIOGRAPHIC APPROACH

- **Typical injuries** - Metaphyseal lesion, rib fractures

- Every type and location of fracture has been documented in abused children

- Fracture is documented in 11%–55% of physically abused children

 76% long bones

 8% skull

 8% the ribs

- **Atypical/Non specific injuries** - but suspicious when the history is inconsistent with the type of injury.
DISCORDANT HISTORIES

A toddler’s fracture of the tibia in an infant who is not yet ambulatory and therefore not “toddling”

Complex skull fracture in an infant who “fell from a bed”
IMAGING
Babygram examinations are **NOT** considered sufficient for diagnosis

- Babygram examinations include the entire body imaged together on one film

- Loss of detail at the periphery of the field of view as the beam becomes angulated to the anatomic part in question

- Radiographic technique varies depending on the density of the body part
Radiographic skeletal survey includes

- AP views of all the bones of the appendicular skeleton
- AP and lateral views of the skull
- AP view of the chest
- AP view of the abdomen
- AP view of the pelvis all on separate films
CT scan may be necessary to evaluate for intracranial and solid organ injury, confirmation of radiographically subtle fractures.

Bone scintigraphy is highly sensitive but expectedly non specific;

- Normal high uptake in the region of the growth plate obscures physeal injury.
<table>
<thead>
<tr>
<th>SPECIFICITY</th>
<th>INJURY</th>
</tr>
</thead>
</table>
| High | Classic metaphyseal lesions
 | Multiple rib fractures especially posterior
 | Scapular fractures
 | Sternal fractures
 | Clavicular fractures
 | Spinous process fractures |
| Moderate | Multiple fractures
 | Fractures in various stages of healing
 | Epiphyseal separations
 | Vertebral body fractures and separations
 | Digital fractures
 | Complex skull fractures |
| Low | Sub periosteal new bone formation
 | Clavicular fractures
 | Long-bone shaft fractures
 | Linear skull fractures |
METAPHYSEAL FRACTURES

- One of the most salient radiographic features of NAT
- Most common tibia, distal femora and proximal humeri
- Indirectly applied forces
- Likelihood of detection directly related to technique
- Specificity decreases beyond infancy
- Avulsed fragments of bone at sites of periosteal attachment or zone of provisional calcification
Fracture occurs through primary medullary spongiosa

BUCKET HANDLE FRACTURES

- Essentially the same as metaphyseal corner fracture

- Larger avulsed bone fragment seen 'en face' as a disc or “bucket handle”
BUCKET HANDLE FRACTURES

Components of the Epiphysis and Metaphysis

- (1) Articular cartilage
- (2) Epiphyseal cartilage
- (3) Secondary center of ossification;
- (4) Epiphyseal plate;
- (5) Epiphysis;
- (6) Metaphysis;
- (7) Fibrous layer of the periosteum;
- (8) Ring of LaCroix;
- (9) Groove of Ranvier;
- (10) Fibrous components of the epiphyseal plate;
- (11) Cortical bone.
Ring of Lacroix / Groove of Ranvier

MULTIPLE POSTEROMEDIAL RIB FRACTURES
MULTIPLE POSTEROMEDIAL RIB FRACTURES

- Posteromedial rib fractures have the highest specificity.
- Can only be caused by anterior and posterior squeezing of posteromedial ribs against transverse process.
- Does NOT occur when chest is compressed against flat board (e.g., CPR).
- Identification of callus vs lucency.
- Role of CT – ease of identification of multiple fractures.
- Oblique radiographs aid identification.

MULTIPLE POSTEROMEDIAL RIB FRACTURES

EPIPHYSEAL SEPARATION

- Moderate specificity; often overlooked
- Fracture occurs through the cartilaginous physis – separation of epiphysis
- Epiphysis frequently non-ossified – missed by inexperienced observer
- Most common – distal humeral epiphysis
EPIPHYSEAL SEPARATION

• Often misdiagnosed as dislocation

• Radius and ulna move medially and posteriorly with respect to the humeral metaphysis

• Fibrous joint capsule is less fragile than the physis; Elbow dislocations DO NOT usually occur in infants

• Ultrasound / MRI for confirmation

• Ultrasound is preferred - No sedation required
MULTIPLE FRACTURES OF VARYING AGE

• Moderately specific; multiple fractures in varying stages of healing

• High index of suspicion – erroneous diagnosis is socially devastating for the family

• Stages of fracture healing: (accelerated in infants)

 Resolution of soft tissue swelling - 4 to 10 days
 Sub periosteal new bone formation - 10 to 14 days;
 Immature or soft callus - 14 to 21 days
 Loss of fracture line definition - 14 to 21 days; and
 Mature or hard callus - > 21 days

• Callus may be markedly delayed in osteopenic patients
- Intra-articular fractures: NO callus formation at fracture site (absence of periosteum)

- Periosteal elevation/reaction more proximally in the bone away from the joint

- Lateral condylar corner fracture; subperiosteal new bone formation in the diaphysis and metaphysis, ending at the capsular origin
LONG BONE FRACTURES (TODDLER’S FRACTURE)

Low specificity but extremely common (39-93 %)

Spiral & Transverse fractures – most common

Femoral fractures in children < 3 years age highly suspicious
LONG BONE FRACTURES (TODDLER’S FRACTURE)
SKULL FRACTURES
DIFFERENTIALS
RICKETS

- Rickets is a very common cause of osteopenia

- Osteopenia is commonly present in premature children and other hospitalized children

- Premature children can sustain multiple fractures including classic CMLs

- Detailed clinical and social history

- Accurate dating of fractures

- Posteromedial rib fractures are ALWAYS suspicious!!
ACCIDENTAL INJURIES
ACCIDENTAL INJURIES

- History is clear and consistent
- Findings reflect severity of forces
- No unexplained skeletal injuries are identified
- Birth trauma possible cause of rib fractures in infants, but is extremely rare
- Rib fractures require significant force; chest wall is more elastic allowing for greater compression
- CPR does not cause posterior rib fractures
OSTEOGENESIS IMPERFECTA
OSTEOGENESIS IMPERFECTA

- Increased bone fragility; multiple fractures

- Complexity and variability make differentiation from abuse very challenging

- Mutation and biochemical collagen analysis are frequently performed

- Rib fractures usually lateral vs posteromedial in NAT

- CML exceedingly rare in OI

Child abuse and orthopedic injury patterns: analysis at a level I pediatric trauma center. Pandya NK et al

Nonaccidental Head Injury in Infants — The “Shaken-Baby Syndrome” Ann-Christine Duhaime, M.D et al

Diagnostic Imaging in Infant Abuse, Am. J. Roentgenol. Kleinman 155 (4): 703

Kemp Alison, Dunstan Frank, Harrison Sara, Morris Susan, Mann Mala, Rolfe Kim et al. Patterns of skeletal fractures in child abuse: systematic review BMJ 2008; 337 :a1518

American Journal of Roentgenology. 2015;204: W192-W198. 10.2214/AJR.14.12788
STOP THE ABUSE