Orthopedic Hardware and Procedures

John Park
Background

• “Orthopedic Hardware”
 – “Hardware” frowned upon
 – Often used by orthopedists
Fracture Management
External fixation

• Materials
 – Plaster of Paris
 – Fiberglass
External fixation

• Materials
 – Plaster of Paris
External fixation

• Materials
 – Plaster of Paris
 • Original casting materials took 2-3 days to harden
 • Improved to 6 hours
 • Around 1800, British diplomat in Turkey observed use of Gypsum
 • First Plaster of Paris bandages introduced in 1850’s
 • Drawbacks: burns, heavy, not waterproof
External fixation

- Plaster
External fixation

• Materials
 – Fiberglass
External fixation

• Materials
 – Fiberglass
 • Fiberglass bandages introduced in early 1970’s
 • Benefits: lighter, harder
 • 1990’s: waterproof (with special underwrap = $$$)
External fixation

• Fiberglass
Casting vs Splinting

• Splinting
 – Non-circumferential
 • 2 layers of fixation with elastic outer wrap
 – Allows flexibility in fixation to accommodate soft tissue swelling
 – Immobilize joints proximal and distal to fracture
 – Usually 3-14 days before switch to cast
Casting vs Splinting

• Splint
Casting vs Splinting

- Splint
Casting vs Splinting

- Splint
Casting vs Splinting

- U-Splint
Casting vs Splinting

- U-Splint
 With posterior slab
Casting vs Splinting

- U-Splint
Casting vs Splinting

- Ulnar gutter Splint
Casting vs Splinting

- Coaptation Splint
Casting vs Splinting

• Finger splints
Casting vs Splinting

- Finger splints
Casting vs Splinting

• Casting
 – Circumferential
 – Immobilize joints proximal and distal to the fracture
 – Usually removed at 4 weeks for radiographs
 – Total length of immobilization usually 6 weeks
Casting vs Splinting

- Cast
Casting vs Splinting

- Short vs Long Arm Casts
Casting vs Splinting

- Long Leg Casts
Casting vs Splinting

- Spica Cast (aka-Hip spica)
Casting vs Splinting

- Thumb spica cast
Casting vs Splinting

- Casting
 - Bivalving
 - Allows immediate application of cast with flexibility to accommodate soft tissue swelling
Casting vs Splinting

- Bivalved cast
Casting vs Splinting

- Bivalved cast
Casting vs Splinting

- Bivalved cast
Casting vs Splinting

• Bivalved cast
Casting vs Splinting

- Bivalved cast
Casting vs Splinting

- Cast Fracture!!
Casting vs Splinting

- **Cast window**
 - Allows ability to monitor skin without loss of fixation
External fixator

- Minimally invasive
- Rigid fixation
- The closer the bars are to the body part, the stronger the construct will be
External fixator

- Pin
- Clamp
- Bar
External fixator

• Mexican external fixator
External fixator

- Mexternal fixator
External fixator

- External fixator
Internal fixation
But first...
Nomenclature

• External fixation
 – By definition, minimally invasive

• Internal fixation
 – Can be either minimally or maximally invasive
Nomenclature

• “ORIF”
 – Commonly used to describe the application of any type of internal fixation to fracture
 – This is INCORRECT
Nomenclature

• “ORIF”
 – Describes an open surgical procedure where the fracture site is directly visualized and reduced by the surgeon
 – Internal fixation is then applied across the reduced fracture
 – Thus…OPEN Reduction/Internal Fixation
Nomenclature

• “ORIF”
Nomenclature

• “ORIF”
Nomenclature

• “ORIF”
Nomenclature

• NOT ORIF
Nomenclature

• CRPP
 – Closed Reduction/Percutaneous Pinning
 – Should be used when fracture is not directly visualized but is reduced and fixation applied into the bone
Nomenclature

- CRPP
Nomenclature

- CRPP
Nomenclature

- CRPP
Wires and Pins
Wires

- Kirschner wire (K-wire)
Wires

• Kirschner wire (K-wire)
 – Fracture fixation
 – Intraoperative joysticks for fx reduction
 – Guides for screw placement
 – Traction
Wires

- Kirschner wire (K-wire)
Wires

- Kirschner wire (K-wire)
Pin

• Steinmann pin
 – Fracture fixation
 – Guides for screws
 – External fixation
 – Traction
* Steinmann pin
Pin

- Steinmann pin
Pin

- Steinmann pin
Pin

- Steinmann pin
Pin

• Steinmann pin
Pin

- Traction pin
- Traction bow
- 2.5cm posterior and inferior to tibial tubercle
Pin

- Traction with K-wire
Screws
Screws

• Come in various sizes (length, thickness)
• Basic types
 – Cortical
 – Cancellous
Screws

• Cortical
Screws

- Cancellous
Screws

Cortical Screw

Cancellous Screw
Screws

Cortical Screw

Cancellous Screw
Screws

Cortical Screw

Cancellous Screw
Screws

• Types of cancellous screws
 – Fully-threaded
 – Partially-threaded (Lag)
Screws

- Cancellous
 - Fully-threaded
Screws

• Cancellous
 – Partially-threaded (Lag)
Screws

• Cancellous
 – Principle of lagging
Screws

- Cancellous
 - Principle of lagging
Screws

• Cancellous
 – Principle of lagging
Screws

- Cancellous
 - Principle of lagging
Screws

• Cancellous
 – Principle of lagging
Screws

• Cancellous
 – Principle of lagging
Screws
Screws
Screws

- Bad Lag Screws
Screws

• Specific screw uses
 – Interfragmentary
 – Plate fixation
 – Syndesmotic
 – Locking
 – Derotation
Screws

• Specific screw uses
 – Interfragmentary
Screws

- Specific screw uses
 - Plate fixation
Screws

• Specific screw uses
 – Syndesmotic
Screws

• Specific screw uses
 – Syndesmotic
Screws

- Specific screw uses
 - Syndesmotic
Screws

• Specific screw uses
 – Locking
Screws

- Specific screw uses
 - Locking
Screws

• Specific screw uses
 – Locking
Screws

• Specific screw uses
 – Dynamization
 • Removal of distal locking screw(s) to allow compression at fracture site with weight-bearing
Screws

- Specific screw uses
 - Derotation
Screws

- Specific screw uses
 - Derotation
Screws

• Specific screw uses
 – Derotation
Screws

• Specific screw uses
 – Derotation
Screws

• Special screws
 – Headless
 – Interference
 – Dynamic Hip Screw (DHS)
Screws

- Headless-compression with single screw
 - Herbert
 - Acutrak –variable pitch
Screws

- Headless
 - Herbert
Screws

• Interference
Screws

• Interference
Screws

- Interference
Screws

- Interference
Screws

- Interference
Screws

• Dynamic Hip Screw
 – Large lag screw attached to side plate
 – Allows dynamic compression of fx with weight-bearing
Internal Fixation Devices
Intramedullary fixation

- Femur – rod
- Tibia – nail
- Humerus – nail
- Flexible – nail
Intramedullary fixation

• Principles
 – Maintains alignment of fracture fragments
 – Does not strip periosteum
 – Minimally invasive
 • Bone entry site
 • Small stab incisions for locking screws
 – Can allow for dynamic compression (dynamization)
Intramedullary fixation

• Approaches
 – Anterograde
 • Femur
 • Tibia
 • Humerus
 • Radius
 • Ulna
 – Retrograde
 • Femur only
Intramedullary fixation

- Femur – rod
Intramedullary fixation

- Femur – rod
Intramedullary fixation

• Femur – rod
Intramedullary fixation

• Femur – rod
Intramedullary fixation

- Femur – rod
 - retrograde
Intramedullary fixation

- Femur – rod
 - Fractured locking screw
Intramedullary fixation

- Tibia - nail
Special Fixation
Special Fixation

- Tension band wiring
 - Wiring pattern converts tensile force of pull of muscle/ligament into a compressive force across fracture
Special Fixation

• Tension band wiring
Special Fixation

- Tension band wiring
Special Fixation

- Tension band wiring
Special Fixation

- Tension band wiring
Special Fixation

• Cerclage wiring
 – Looped wire provides stabilization in conjunction with more rigid fixation
 – Used for fracture management and in spinal instrumentation
Special Fixation

• Cerclage wiring
Arthroplasties
Arthroplasties

- Joint replacement
- Total arthroplasty
 - Replaces both sides of articulation
- Hemiarthroplasty
 - Resurfacing – replaces only 1 surface
 - Unipolar – replaces only 1 side of articulation
 - Bipolar – replaces both surfaces but only 1 side of articulation
Arthroplasties

- Total arthroplasty
Arthroplasties

- Total arthroplasty
 - Cemented
 - Non-cemented
 - Hybrid
 - Cement on femoral side only
Arthroplasties

- Total arthroplasty
 - Cemented
 - Non-cemented
 - Hybrid
 - Cement on femoral side only
Arthroplasties

• Total arthroplasty
 – Cemented
 – Non-cemented
 – Hybrid
 • Cement on femoral side only
Arthroplasties

- Hemiarthroplasty
 - Resurfacing
Arthroplasties

- **Hemiarthroplasty**
 - **Unipolar**
 - Prosthetic head articulates directly with acetabulum
Arthroplasties

- Hemiarthroplasty
 - Bipolar
Arthroplasties

- Hemiarthroplasty
 - Bipolar
 - Small femoral head articulates with metal cup (lined with polyethylene) which fits into native acetabulum
Arthroplasties

• Knee arthroplasty
 – TKA (cemented, non-constrained)
Arthroplasties

- Knee arthroplasty
 - TKA (cemented, constrained)
Arthroplasties

• Knee arthroplasty
 – Unicondylar knee replacement
 • Younger patients, usually medial, done to buy time
Arthroplasties

• Revision arthroplasty
 – Primary arthroplasty removed due to infection or failure
 – Tip-off = long stem
Arthroplasties

• Revision arthroplasty
Arthroplasties

- Revision arthroplasty
Plates
- Tibial condylar plate
- Blade plate
- Reconstruction plate
- Dynamic compression plate (DCP)
- LISS plate
- Calcaneal plate
Plates

- **Multiple functions**
 - Compression
 - Rigid fixation
 - Apply compression across fracture
 - Neutralization
 - Hold fragments in place
 - Used in conjunction with lag screws
 - Buttress
 - Fracture reduced, but used to “lock-in” frags
 - Used in tibial plateau
Plates

- Types of plates
 - Dynamic compression plate
 - Allows compression across fracture
 - Can be any of the 3 types
Plates

• Types of plates
 – Dynamic compression plate
 • Locking Compression plate
Plates

- Types of plates
 - Dynamic compression plate
 - Low Profile
 - Reduced contact with periosteum may increase blood flow to fracture
Plates

• Types of plates
 – Dynamic compression plate
 • Low Profile
Plates

• Types of plates
 – Tubular plates
 • Aka “1/3 tubular”
 • Looks like DCP
 • Areas of limited ST
 – Dist fib, ulna
Plates

• Types of plates
 – Blade plate
 • Blade attached to side plate
 • Blade through large frags
Plates

- Types of plates
 - Reconstruction plate
 - Aka “Recon” plate
 - Very malleable, cut to length
• LISS plate
 – Less Invasive Stabilization System
 – Contoured to specific bone
 – Reduced ST injury
 – Distal femur, prox tib
Spinal Fixation
Spinal Instrumentation

- Rod
- Laminar hooks
- Pedicle screw
Spinal Instrumentation

- Rod
- Laminar hooks
- Pedicle screw
- Cerclage wire
 - laminar or spinous process
- Cross-link
Spinal Instrumentation

• 5 basic types
 – Distraction/Compression
 – Segmental instrumentation
 – Derotation or coupled systems
 – Pedicle screw (Translational) systems
 – Anterior instrumentation
Distraction/Compression

- Harrington rods
 - 1950’s
 - Allows distraction of concave margin of curvature
 - Ratcheted rod with opposed laminar hooks
Segmental

• Luque rods
 – Smooth rod with multiple wires which pull spine to rod
 – Distributes force over many segments (Galveston technique) (Luque rectangle)
Coupled systems

- Cotrel-Dubousset
 - Aka “CD rod”
 - Hooks on rods
 - Allows compression and distraction on same rod
Pedicle screw

- Pedicle screws
 - 50-75% into body
 - Does not rely on intact posterior elements
 (ideal after posterior decompression)
Posterior instrumentation

• In practice, use combinations that work best for each curve
Anterior Instrumentation

- Allows very strong lateral forces
 - Actually lateral fixation
 - Bad results when anterior
 - Same principles
 - Screw purchase slightly weaker because body is mostly cancellous bone
Anterior Instrumentation

- Interbody devices
 - Interbody cage
 - Main function is to restore disc height
 - PLIF
 - Posterior Lumbar Interbody Fusion
Anterior Instrumentation

- Interbody devices
 - Interbody cage
 - Main function is to restore disc height
 - PLIF
 - Posterior Lumbar Interbody Fusion
Anterior Instrumentation

- Interbody devices
 - Interbody cage
 - Main function is to restore disc height
 - PLIF
 - Posterior Lumbar Interbody Fusion
Anterior Instrumentation

- Interbody devices
 - Interbody cage
 - Main function is to restore disc height
 - PLIF
 - Posterior Lumbar Interbody Fusion
Anterior Instrumentation

- Interbody devices
 - Interbody cage
 - Main function is to restore disc height
 - PLIF
 - Posterior Lumbar Interbody Fusion
Take Home Points

- Non-circumferential = Splint
- Circumferential with split = Bivalved
- Thin wire that's bent = K-wire
- Thicker pin not bent = Steinmann pin
- Screw with naked shank = Lag screw
- Screw across fx = Interfragmentary screw
Take Home Points

- If open surgery = ORIF
- If K-wires only = CRPP
- Femur = rod
- Tibia = nail
- Plate = plate
- Tension bands and syndesmotic screws are allowed to break
Take Home Points

• 1 side of joint = hemiarthroplasty
• Both sides = total (beware the bipolar!)
• Rods, hooks, pedicle screws, cross links
References

References

Web Site Credits

• www.gentili.net
• www.rad.washington.edu/mskbook/orthopedichardware.html
• www.narang.com
• en.wikipedia.org/wiki/Cast
• www.professionalsafetyrx.com
• www.alphamedical.com
• www.supports4u.com