Lisfranc Injuries

Tara Robbins, MD UCSD Sports Medicine Fellow

Lisfranc

- First described by French surgeon, Jaques Lisfranc serving in Napoleons's army on the Russian front
- Described a method of forefoot amputation for management of gangrene
- Some reports suggest that there was no osteotomy across the tarsometatarsal joints as previously thought!

Lisfranc joint

- Lisfranc ligamentspans articulation of medial cuneiform and 2nd MT base
- No transverse ligament exists between 1st and 2nd MT bases
- "Keystone" wedging of 2nd MT into cuneiformsupport for entire tarsometatarsal articulation
- "Weak link"

Lisfranc function

- Promotes energy dissipation
 - Allows force to be transmitted between midfoot and forefoot
- Stable axis for rotation
- Key for plantar flexion and dorsiflexion

Mechanisms of Injury

- Direct trauma
- Indirect trauma
 - Stationary foot with weight of body becoming deforming force by torque, rotation, compression
- High energy forces
- Falling forward on plantar flexed foot

Mechanisms of Injury

- Athletic: axial loading on hyperplantarflexed foot
 - Foot ball
 - Gymnastics
 - Ballet
 - Track and field
- Neuropathic
 - Subacte diastasis can occur over time without significant pain
 - Loss of "keystone"

Lisfranc injuries

- Sprains
 - 1st and 2nd degree: Partial ligament tears with no instability and normal radiographs
 - 3rd degree: Instability and diastasis > 2mm on AP
- Fractures
 - Isolated: 1 or 2 MTs displaced
 - Homolateral: all MTs displaced in same direction
 - Divergent: MTs are displaced in sagital or coronal plane
- Joint dislocations

Symptoms and Exam

- Swelling and pain in midfoot
- Inability to bear weight
- Midfoot instability
- Suspect when mechanism is consistent and swelling or pain persists 5 or more days from initial injury
- Pain at joint with gentle pronation and abduction of the foot
- Make sure to palpate DP pulse and cap refill

Radiographs

- Weight bearing AP
- Lateral
- 30 degree oblique
- CT scan or bone scan if x rays unrevealing and suspicion is high

Normal Lisfranc

- Medial edge of 2nd MT base should line up with the medial edge of middle cuneiform
- Medial edge of 3rd MT should line up with medial edge of 3rd cuneiform
- Medial edge of 4th MT base should be in line with medial edge of cuboid

Weight bearing AP

 Medial border
2nd MT in
line with
medial
border
middle
cuneiform

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Lateral

 1st and 2nd MTs in line with cuneiforms

Oblique

 Medial border of 4th MT in line with medial border of cuboid

> QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Figure 4. Classification of Lisfranc injuries.

The ligamentous anatomy of the Lisfranc complex is also depicted. Source: Hardcastle PH, Reschauer R, Kutscha-Lissberg E, et al. Injuries to the tarsometatarsal joint: Incidence, classification and treatment J Bone Joint Surg Br. 1982;64:349-356.

Case #9: 13 y/o F

WI

Neuropathic

Case #14: Convergent

67.120 mA100 1102mm 1.25mm 1.25mm 1.1.7-22 proV200 ALC 900 MI W 1546 L

Treatment

- Early diagnosis!!
- Nonoperative
 - probability of sprain with no e/o diastasis then immobilze with non weight bearing cast for 4-6 wks, followed by short-leg walking cast for 2-4 weeks
 - Progressive ambulation and rehab
 - If pain persists up to 2 weeks after rehab has begun, then repeat x rays

Operative Tx

- Displacement more than 2mm
- Should be done within first 12-24 hrs vs 7-10 days after the injury
- ORIF
 - cast with toe touch weight bearing for 8-12 weeks
 - - protective shoe for 3 months after cast removed
- Closed fixation with percutaneous K wires

Complications

- Post-traumatic arthrosis
 - directly related to degree of comminution of the articular surface
- Flat foot deformity with instability with weight bearing
- Neuromas
- Painful hardware, hardware failure
- RSD
- Skin necrosis and sloughing, vascular injury, compartment syndrome

References

- Trevino, S. Lisfranc fracture dislocation. June 16, 2008. emedicine.com
- Banerjee R, Nickisch F, et al. Browner: Skeletal Trauma, 4th ed. 2008 W.B. Saunders Co. Chapter 61- Foot injuries
- Burroughs K, Reimer C, et al. Lisfranc injury of the foot: A commonly missed diagnosis. AAFP 1998 Jul; 58(1): 118-24
- Helms C. Fundamentals of skeletal radiology, 3rd ed. 2005, Elsevier. Chapter 5: Trauma: 111-112
- Special thanks to Dr. Tudor Hughes of UCSD Bone Radiology for providing the radiographs