You Tube: Steph Curry Ankle Breaker
Hind Foot Trauma

Syed Ali MD
Calcaneus Articulations

- Subtalar Joint: Superiorly, the calcaneus articulates with the talus at the talocalcaneal joint making contact at anterior, middle and posterior facets.
- Chopart Joint: Anteriorly, the calcaneus articulates with the navicular (talocalcaneonavicular joint) and the cuboid (calcaneocuboid joint) bones.
SUBTALAR JOINT
Superior Surface

- 4 articulating surfaces
- Posterior, middle, and anterior facets
- Calcaneal sulcus
- Sinus tarsi: calcaneal sulcus and talus
- Middle facet supported by sustentaculum Tali
- Anterior facet supported by the calcaneal beak.
- Triangular anterior surface of the calcaneus articulates with the cuboid
Subtalar Joint
Subtalar Joint
Subtalar Joint
Subtalar Ligaments

- Tarsal sinus ligaments, including:
 a) Cervical ligament
 b) Talocalcaneal interosseous ligament
 c) Medial and Lateral Talocalcaneal ligaments
 1) Lateral,
 2) Intermediate, and
 3) Medial roots of the inferior extensor retinaculum
Medial and Lateral Talocalcaneal ligaments
Interosseous Talocalcaneal Ligament

• thick quadrilateral ligament
• originates from the sulcus calcanei, near the capsule of the posterior subtalar joint.
Cervical Ligament
Subtalar Dislocation (peritalar or hindfoot dislocation)
Subtalar Dislocation

- 65% to 80% are medial dislocations
- Remaining are lateral dislocations
- Case reports of anterior or posterior dislocations
- Osteochondral Fractures: up to 100% of lateral dislocations and 12%–38% medial dislocations
- Routine postreduction CT has been recommended to detect these fractures more accurately
Medial Subtalar Dislocation
Lateral Subtalar Dislocation

Lateral Subtalar dislocation
Total Dislocation (pan-talar and luxatio tali totalis)

- Dislocation of the talus from all its articulations,
- Uncommon
- Devastating injury resulting from high-energy trauma.
- Almost all are open injuries.
- Avascular necrosis and osteomyelitis.
Total Dislocation
You Tube: Steph Curry Chris Paul
Calcaneus
Tensile trabeculae and Compression trabeculae
“Pseudocyst”

- “Pseudocyst” of the calcaneus
Lateral surface

- Flat and subcutaneous
- Central peroneal tubercle (PB and PL)
- Retrotrochlear Eminence
- Calcaneofibular ligament posteriorly
- Lateral talocalcaneal ligament attaches anterosuperiorly
Medial Surface

- Sustentaculum tali is at the anterior aspect of the medial surface.
- Groove inferior to it transmits the flexor hallucis longus tendon.
- Neurovascular bundle runs adjacent to the medial border of the calcaneus
• Normal Bohler angle: 20°- 40°
• BA < less than 20°
 Posterior facet collapse from an underlying fracture
• Normal Critical angle of Gissane: 95-105

• CAG > 130°: Posterior facet collapse from an underlying fracture
Tendons
Radiographic Views

- \(a\) anteroposterior and oblique views assessment of the calcaneocuboid joint
- \(b\) axial view of the heel (Harris view), and
- \(c\) Brodens View: dorsiflexion and internal rotation of the foot to better visualize the subtalar joint and posterior facet.
- \(d\) spine, contralateral foot and knee
Harris Beath View

- Difficult in acute setting
- Demonstrates body of the calcaneus, middle facet of the subtalar joint and sustenaculum tali
- Heel width
- (Harris RI, JBJS 1948:30Br:624)
Broden’s View

- Better visualize subtalar joint
- Supine w/ foot rests on the film cassette with neutral dorsiflexion;
- Entire lower leg and foot is internally rotated 45 deg;
- Central beam directed toward the lateral malleolus;
- Films are obtained at 10, 20, 30, and 40 deg. of cephalic tilt
- (Bruden Acta Radiol 31:85;1949).
CT scan

- For fracture classification, particularly with the Sanders classification.
- Reformat images parallel and perpendicular to the posterior facet off the sagittal reformatted images.
Calcaneal Fractures

- Most common tarsal bone to be fractured
- 60% of fractures involving the tarsal bones
- 1%–2% of all fractures
- 17% open fractures
- Axial loading in men 30–60 years old
- Poor outcomes.
Calcaneal Fractures

- “Mondor sign” : haematoma that is formed and extending distally along the sole of the foot.
- Considered pathognomonic for calcaneal fracture.
Pathoanatomy

Increased Axial Load

Normal Alignment
Pathoanatomy

Normal Alignment
Pathoanatomy

Heel in Varus with height shortening and widening
Primary fracture line splits the calcaneus obliquely through the posterior facet and exits anterolaterally and posteromedially.
Primary fracture line exits anterolaterally and posteromedially.

Secondary fracture line appears beneath the posterior facet and exits posteriorly through the tuberosity.

The posterior facet is attached to the
Primary fracture line splits the calcaneus obliquely through the posterior facet and exits anterolaterally and posteromedially.

Secondary fracture line exits superiority just behind the posterior facet.

The posterior facet is a free...
Essex-Lopresti classification system

tongue type fracture

depression type fracture
Essex-Lopresti classification system

depression type fracture

tongue type fracture
Burst fracture of the L1 vertebral body
Sagittal shear fracture
Sander’s Classification

- Type I - Non-displaced (<2mm)
- Type II - Two articular fragments
- Type III - Three articular fragments
- Type IV - More than three articular fragments
Sander’s Classification

- three primary fracture lines (A, B, C) through the posterior facet divide the calcaneus into four fragments (lateral, central, medial and sustentacular).
Sanders Classification

- three primary fracture lines (A, B, C) through the posterior facet divide the calcaneus into four fragments (lateral, central, medial and sustentacular).
Sanders Classification

A PRIMARY FRACTURE LINE A

Type IIA

Two-part fracture of the posterior facet, with primary fracture line A is lateral.
Sanders Classification

Primary Fracture Line B

Type IIB

Two-part fracture of the posterior facet, with primary fracture line B is central.
Sanders Classification

Primary Fracture Line C

Type IIC

Two-part fracture of the posterior facet, with primary fracture line C is medial.
Sanders Classification

A PRIMARY FRACTURE LINE A
B PRIMARY FRACTURE LINE B

Type III AB
Three-part fracture of the posterior facet with a centrally depressed fragment, with primary fracture lines A and B.
Type III AC
Three - part fracture of the posterior facet with a centrally depressed fragment, with primary fracture lines A and C.
Sanders Classification

Primary fracture line B

Primary fracture line C

Type III BC
Three-part fracture of the posterior facet with a centrally depressed fragment, with primary fracture lines B and C.
Sanders Classification

- Primary fracture line A
- Primary fracture line B
- Primary fracture line C

Type IV
Four-part articular fractures; highly comminuted.
Calcaneus Fractures
The higher the fracture number, the worse the result.
• Type I fracture were treated without surgery
• Type II and type III fractures who underwent surgery experienced excellent or good clinical results in 73% and 70% of cases, respectively
• Only 9% of patients with type IV fractures had excellent or good clinical results after surgical treatment.
• Sanders et al have shown that although anatomic reduction is necessary for a good clinical outcome
• Success is not guaranteed, possibly related to cartilage necrosis at the time of injury.
Typical Features

- (a) Loss of height due to impaction and rotation of the tuberosity fragment,
- (b) increase in width due to lateral displacement of the tuberosity fragment, and
- (c) disruption of the posterior facet of the subtalar joint
Complications

- Extraosseous abnormalities
- Tendons injured by sharp fracture fragments or entrapped between them.
- Tendon entrapment can be an impediment to reduction
- Medially, there are greater stretching forces, which result in fracture blister formation
- Compartment syndromes can occur and may be unrecognized
- Axial load mechanism, calcaneal fractures can be associated with burst fractures of the spine
FHL tendon entrapment

- **Tendon injury:** may result from the entrapment of fibers between fracture fragments

- **FHL tendon entrapment** along its course through a severely comminuted open calcaneal fracture
Peroneus longus tendon entrapment

- Peroneus longus tendon entrapment of the peroneus longus tendon caused by “blowout” of the lateral aspect of the calcaneus. A Sanders type IIA intraarticular calcaneal fracture is also noted.
Fracture Blister
Extra-articular Fractures

- Account for about 25% of calcaneal fractures
- All fractures that do not involve the posterior facet of the subtalar joint
- Displaced fractures involving more than 25% of the calcaneocuboid articular surface are usually treated with ORIF
- Nonunion is the most common complication
Extensor digitorum brevis Avulsion
Achilles tendon avulsion type fracture
Achilles tendon avulsion type fracture

- Achilles tendon: avulsion type fracture of the calcaneal tuberosity posteriorly, there is a high risk of tissue necrosis and possible infection if management is delayed.
Bifurcate ligament

- The bifurcate ligament, also designated the “ligament of Chopart,” is formed by two ligaments: the medial calcaneocuboid ligament and lateral calcaneonavicular ligament.
Bifurcate Ligament
Treatment (Conservative)

• Nonsurgical treatment is indicated for
• (a) nondisplaced or minimally displaced (Sanders type I) closed fractures;
• (b) extraarticular fractures; or
• (c) patients who have peripheral vascular disease, who smoke, or who have other surgical contraindications.
• Early range of motion without reduction or weight bearing
Treatment (surgical intervention)

• For displaced intraarticular (Sanders 2-4) and open fractures, surgical intervention is recommended within the first 3 weeks.
• Before early consolidation of the fracture but not until swelling has decreased (skin wrinkles).
• Intervention consists of ORIF and arthrodesis if fracture is comminuted.
You Tube Steph Curry George Hill
Talus
Talus Fractures

- less than 1% of all fractures
- 3% and 6% of fractures in the foot.
- Result of high-energy trauma
- Severity of talar injuries
- Complications and long-term disability
- Timely diagnosis and appropriate categorization are important for treatment planning
Talus Superior Projection

- head (for navicular)
- neck
- articular surface for lateral malleolus
- articular surface for distal tibia (dome)
- lateral process
- medial malleolus
- medial process
- posterior process
Vascular Anatomy of Talus

- superior surface
- posterior tibial artery
- perforating peroneal artery
- anterior tibial artery
- sinus tarsi artery

(lateral) (medial)
Vascular Anatomy of Talus

- Anterior Tibial Artery (continues as Dorsalis Pedis)
- Peroneal Artery
- Lateral Tarsal Artery
- Posterior Tibial Artery
- Artery of the Tarsal Sinus
- Medial Tarsal Branches
- Vascular plexus from Calcaneal branches of the Posterior Tibial Artery
- Artery of the Tarsal Sling
- Artery of the Tarsal Canal
- Inferior Talar Neck Branches
- Deltoid Branch
Talar Head Fractures

- Articular surface of the talus at the talonavicular articulation
- Least common, accounting for 5%–10% of all talar fractures
- Two patterns have been described:
 1) Crush injury
 2) Shear fracture
Talar Head Fractures
Talus Neck Fractures

- High incidence of talar neck fractures explained by its small cross-sectional area and vascular ingrowth, which increases the neck’s porosity.
- Mechanism of this injury is forced dorsiflexion of the talus against the anterior aspect of the tibia, preceded by rupture of the posterior subtalar ligaments.
- Motor vehicle or motorcycle collisions and high-level falls.
Hawkins-Canale Type I

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Description</th>
<th>Risk of Osteonecrosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nondisplaced talar neck fracture</td>
<td>0–15</td>
</tr>
<tr>
<td>II</td>
<td>Talar neck fracture and talocalcaneal dislocation</td>
<td>20–50</td>
</tr>
<tr>
<td>III</td>
<td>Talar neck fracture, talocalcaneal dislocation, and tibiotalar dislocation</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Talar neck fracture and disruption of all talar articulations</td>
<td>100</td>
</tr>
</tbody>
</table>
TYPE I

- Non-displaced
- 10% AVN
Hawkins-Canale Type I
Table 1: Risk of Osteonecrosis in Hawkins-Canale–Type Talar Fractures

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Description</th>
<th>Risk of Osteonecrosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nondisplaced talar neck fracture</td>
<td>0–15</td>
</tr>
<tr>
<td>II</td>
<td>Talar neck fracture and talocalcaneal dislocation</td>
<td>20–50</td>
</tr>
<tr>
<td>III</td>
<td>Talar neck fracture, talocalcaneal dislocation, and tibiotalar dislocation</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Talar neck fracture and disruption of all talar articulations</td>
<td>100</td>
</tr>
</tbody>
</table>
TYPE II

- Fracture with subtalar dislocation or subluxation
- 50% AVN
Hawkins-Canale Type 3

Table 1: Risk of Osteonecrosis in Hawkins-Canale–Type Talar Fractures

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Description</th>
<th>Risk of Osteonecrosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nondisplaced talar neck fracture</td>
<td>0–15</td>
</tr>
<tr>
<td>II</td>
<td>Talar neck fracture and talocalcaneal dislocation</td>
<td>20–50</td>
</tr>
<tr>
<td>III</td>
<td>Talar neck fracture, talocalcaneal dislocation, and tibiotalar dislocation</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Talar neck fracture and disruption of all talar articulations</td>
<td>100</td>
</tr>
</tbody>
</table>
TYPE III

- Fracture with subtalar and tibiotalar dislocation
- 90% AVN
Hawkins-Canale Type 3
Hawkins-Canale Type 4

Table 1: Risk of Osteonecrosis in Hawkins-Canale–Type Talar Fractures

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Description</th>
<th>Risk of Osteonecrosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nondisplaced talar neck fracture</td>
<td>0–15</td>
</tr>
<tr>
<td>II</td>
<td>Talar neck fracture and talocalcaneal dislocation</td>
<td>20–50</td>
</tr>
<tr>
<td>III</td>
<td>Talar neck fracture, talocalcaneal dislocation, and tibiotalar dislocation</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>Talar neck fracture and disruption of all talar articulations</td>
<td>100</td>
</tr>
</tbody>
</table>
TYPE IV

- Fracture with subtalar and tibiotalar dislocation and talonavicular subluxation or dislocation.
Surgery

• Conservative for nondisplaced talar neck fractures.
• Therefore, even subtle displacement of the talar neck fracture must be detected.
• Most type II fractures are treated with surgical reduction.
• In type III and IV fractures, closed reduction may be initially attempted in the emergency department to relieve skin tension and minimize soft-tissue injury followed with ORIF.
Talar Body Fractures

- Intra-articular
- Incidence ranges widely from 13% to 61%
- Sneppen classification
Sneppen Classification

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Compression or osteochondral dome fracture</td>
</tr>
<tr>
<td>B</td>
<td>Coronal shear fracture</td>
</tr>
<tr>
<td>C</td>
<td>Sagittal shear fracture</td>
</tr>
<tr>
<td>D</td>
<td>Posterior tubercle fracture</td>
</tr>
<tr>
<td>E</td>
<td>Lateral tubercle fracture</td>
</tr>
<tr>
<td>F</td>
<td>Crush comminuted fracture</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>A</td>
<td>Compression or osteochondral dome fracture</td>
</tr>
<tr>
<td>B</td>
<td>Coronal shear fracture</td>
</tr>
<tr>
<td>C</td>
<td>Sagittal shear fracture</td>
</tr>
<tr>
<td>D</td>
<td>Posterior tubercle fracture</td>
</tr>
<tr>
<td>E</td>
<td>Lateral tubercle fracture</td>
</tr>
<tr>
<td>F</td>
<td>Crush comminuted fracture</td>
</tr>
</tbody>
</table>
Medial talar dome osteochondral fracture
Lateral talar dome osteochondral fracture
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Compression or osteochondral dome fracture</td>
</tr>
<tr>
<td>B</td>
<td>Coronal shear fracture</td>
</tr>
<tr>
<td>C</td>
<td>Sagittal shear fracture</td>
</tr>
<tr>
<td>D</td>
<td>Posterior tubercle fracture</td>
</tr>
<tr>
<td>E</td>
<td>Lateral tubercle fracture</td>
</tr>
<tr>
<td>F</td>
<td>Crush comminuted fracture</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>A</td>
<td>Compression or osteochondral dome fracture</td>
</tr>
<tr>
<td>B</td>
<td>Coronal shear fracture</td>
</tr>
<tr>
<td>C</td>
<td>Sagittal shear fracture</td>
</tr>
<tr>
<td>D</td>
<td>Posterior tubercle fracture</td>
</tr>
<tr>
<td>E</td>
<td>Lateral tubercle fracture</td>
</tr>
<tr>
<td>F</td>
<td>Crush comminuted fracture</td>
</tr>
</tbody>
</table>
Sagittal and Coronal Shear Type
Lateral Process Fractures

- Snowboarding: 17x more common
- 15% of all snowboarder ankle injuries
- Often occult on initial radiographs
- Persistent pain about the lateral side of the ankle after forced dorsiflexion and inversion injuries to the foot account
- Hawkins Classification
“Hawkins Classification”

McCrory and Bladin
Type I (simple) fracture
Type II (cortical avulsion) fracture
Type III (comminuted)
Lateral Process Fractures

von Knoch et al (2007)'s V-sign
Lateral Process Fractures

Immediately after injury

5 month

Post surgery
FRACTURES OF THE TALUS

POSTERIOR PROCESS FRACTURE

Lateral View
Posterior Process Fracture

- Involve the lateral tubercle more than the medial tubercle
- Forced plantar flexion, leading to compression of the posterior process between the tibia and calcaneus.
- Also direct trauma to the posterior ankle.
Posterior medial tubercle fracture (Cedell Fracture) (Uncommon)
Posterior Process Fracture
References

- Melinevski et al