Current Concepts in Magnetic Resonance Imaging of the Hip

Ray Hong
Overview

• Technique
• Basic Anatomy/Normal Variants
 – Osseous
 – Soft Tissue
• Pathology
 – FAI
 – RC/Hamstring Tears
 – Ligamentum Teres
 – Adhesive Capsulitis
Technique

- Surface coil used to optimize SNR

<table>
<thead>
<tr>
<th>Coronal</th>
<th>Transverse</th>
<th>Sagittal</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-weighted</td>
<td>T1-weighted</td>
<td>T1-weighted</td>
</tr>
<tr>
<td>T2-weighted FS</td>
<td>T2-weighted FS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MR Arthrography

- Imaging

<table>
<thead>
<tr>
<th>Coronal</th>
<th>Transverse</th>
<th>Sagittal</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-weighted FS</td>
<td>T1-weighted FS</td>
<td>T1-weighted FS</td>
</tr>
<tr>
<td>T2-weighted FS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Axial Oblique Sequence used to measure femoral Head-neck offset
Normal Osseous Anatomy

- Hip is ball and socket joint stabilized by its intrinsic anatomy
Normal Osseous Anatomy

- Acetabular notch
Greater Trochanter

- Anterior: g. minimus attachment
- Lateral: g. medius attachment
- Posterosuperior: g. medius attachment
- Posterior: trochanteric bursa
Greater Trochanter Anatomy

- Gluteus Minimus
- Gluteus Medius
- Gluteus Maximus
Hamstring Anatomy

- **Superolateral**: semimembranosus
- **Inferomedial**: conjoint tendon comprised of semitendinosus and long head of biceps femoris
Hamstring Anatomy

Acetabular Labrum

- Composed of fibrocartilaginous tissue
- Primarily avascular with increased vascularity adjacent to the capsule
- Role is unknown since the hip joint is already stable
- Thickest in posterosuperior extent
- Inferiorly, coalesces with transverse ligament
Labrum

- Triangular 69.2%
- Round 15.8%
- Flat 12.5%
- Absent 2.5%

Pitfalls of the Labrum

- Normal sublabral sulcus in anterosuperior labrum
 - Pro: sulcus has sharp margins
 - Con: none have been seen in cadavers or patients but this may be due to lack of intra-articular contrast

Anterosuperior Sublabral Sulcus

• 3 criteria from a recent article:
 – If contrast doesn’t extend through entire labrum
 – If it has smooth margins
 – Also if it remains shallow (<50%)

Labrum

• MR arthrography is a sensitive and specific tool
 – Debate on both sides of spectrum
 • Keeney et al says that arthroscopy is needed
 • Mintz et al states noncontrast is just as accurate
 – Radial imaging has been investigated with some success but low sample sizes
• Classified into traumatic or degenerative
 – Intrusubstance or detachment
• Classification of tears described by Czerny et al.

Stage 0

- Normal triangular labrum
- Normal recess
Stage 1A

- Increased intralabral signal
Stage 2A

- Contrast material extends into labrum
Stage 3A

- Labral Detachment

The B subtypes have a hypertrophied labrum without perilabral sulcus
Cartilage

- Difficult to evaluate with standard MR imaging
 - Inseparable femoral/acetabular cartilage
 - Hip cartilage is extremely thin (1-2mm)
Cartilage

• MR arthrography
 – Schmid et al were able to detect chondral abnormalities with high sens/spec
 – Traction can also be useful
 – Special techniques: water-excitation 3D double-echo steady-state sequence
Cartilage

- MC location of abnormality is anterosuperior acetabulum
 - Can be delaminating
 - Flap > 1mm

- Treatment:
 - microfx
Femoroacetabular Impingement

• Cause for early degenerative changes in young pts

• Symptoms: pain on hip flexion and internal rotation
 – Key feature: PE is disproportionate loss of ROM during internal rotation

• Classified as either cam or pincer-types
Normal femoral head-neck junction and acetabulum allows clearance of femoral head during flexion
Cam-type FAI

- Offset of femoral head/neck junction
- Etiologies:
 - CHD
 - SCFE
 - AVN
 - Trauma
Using an axial oblique plane, alpha angle measured. Normal is 42 degrees with upper limits of 55 degrees.
Cam-type FAI

- Ganz: cartilage torn while the labrum was intact
- Kassarjian: triad of findings including cartilage and labral abnormalities
- Leunig: fibro cystic change are early manifestations of FAI
Cam Impingement

Cam Impingement
Pincer-type FAI

• Older female patient population
• Abnormal acetabular morphology
• Etiologies:
 – Coxa profunda
 – Acetabular retroversion
 – Protrusio
 – Trauma
 – Labral ossification
• Cross-over sign
 – Sign of retroversion
Pincer-type FAI

• Coxa profunda:
 – Defined by measuring the distance of the medial acetabular wall and the ilioischial line
 • Males: > 2mm
 • Females: > 6mm

• Acetabulo protrusio:
 – Femoral head projects medial to the ilioischial line
Pincer-type FAI

- MR findings: primarily labral abnormalities
 - Cartilage rarely affected
 - Contre-coup injury to the posteroinferior acetabular labrum can be seen
Treatment

• Early diagnosis important for treatment
 – Cam-type: femoral neck osteoplasty
 • Removing redundant portion of the femoral head
 – Pincer-type: removal of the excessive acetabular portion
 • Reverse periacetabular osteotomy used for acetabular retroversion
Rotator Cuff Pathology

• Tears of the g. medius and minimus tendons
• Uncertain etiology
 – ? Friction from IT band
 – Abnormal gait
 – Repetitive stress in runners
 – Trauma
• Elderly most affected
Clinical

- Symptoms include lateral hip pain
 - Arthritis
 - Tendonitis
 - Insufficiency fracture
 - Muscle strain
 - Bursitis
Imaging

• MR findings:
 – Bunker: originate in g. minimus muscle with a circular or oval defect
 – Traycoff: tears usually involve the anterior aspect of g. medius
 – Kingzett-Taylor: pathology always involved g. medius with extension to minimus in minority
 – Chung: atrophy of the g. medius muscle present with tears
Imaging

- Cvitanic et al.
 - Incidence equal for g. medius and minimus
 - Small focal tears > avulsions
 - Most specific/accurate finding for tear:
 - Increased T2 signal superior to the greater trochanter
Treatment

- Complete avulsion: surgical reattachment
- Tendinosis/partial tear: conservative treatment with intensive PT
Hamstring Pathology

- MC site usually involves MT junction
- Focus on pathology to the PHAC to the ischial tuberosity
- Most severe injury avulsion
 - Occurs in athletes during excessive eccentric contraction during running or jumping
 - In children, the apophysis involved
Hamstring Pathology

MR findings

- Most avulsions involve conjoint tendon with partial tearing of SMB

- Ragheb et al:
 - 82% of pathology involved all 3 tendons
 - SMB most common to be torn in isolation
Treatment

• Early surgical intervention required
 – To avoid complications such as gluteal sciatica from localized scarring or neuritis from displaced hamstrings
Ligamentum Teres

- Increasingly recognized as a source of hip pain

- Function unknown: unlikely stability
 - Proprioception
 - Nociception
 - Spreading synovial fluid like a windshield wiper
Ligamentum Teres

• Difficult to visualize on arthroscopy
 – 3rd most common finding arthroscopically in athletes
 – Deep anterior groin pain
• Gray et al described 3 types
 – Complete rupture from trauma/surgery
 – Partial tear in pts with chronic sx’s
 – Degeneration in young pts
 • RF’s include LCP and SCFE

Ligamentum Teres
Treatment

• Debridement and washout

• Total hip arthroplasty performed when conservative treatment fails
Adhesive Capsulitis

• Clinically: painful restricted motion
• Imaging: normal radiographs/MR’s
 – Tightness during arthrography
 • Failed arthroscopy
• Etiology: idiopathic
 – Secondary to pathology (i.e. synovial chondr)
• Demographics: middle aged women

Adhesive Capsulitis of the Hip
Conclusion

• Normal Anatomy:
 – Osseous: ischial tuberosity and greater trochanter
 – Labrum: pitfalls and variants

• Pathology:
 – Labral tears in association with FAI
 – Hamstring/Rotator cuff tears
 – Ligamentum teres
 – Adhesive capsulitis