Articular Diseases of the Cervical Spine

Binh-To Tran
May 12, 2010
PRETEST

1. Juvenile Idiopathic Arthritis
2. Rheumatoid Arthritis
3. Seronegative Spondyloarthropathy
4. Gout
5. CPPD
Anatomy

- 4 atlanto-axial articulations
- 4 types of subluxation
- Atlanto-axial stabilizers
- Normal predental space
Anatomy

- **4 atlanto-axial articulations**
 - Between the posterior aspect of the anterior arch of the atlas and the front of the odontoid
 - Between the anterior aspect of the tranverse ligament and the back of the odontoid
 - Between the articular processes on either side
 - Synovial membrane for each joint

- **4 types of subluxation**
- **Atlanto-axial stabilizers**
- **Normal predental space**

Grant’s Atlas
Anatomy

- 4 atlanto-axial articulations

- 4 types of subluxation
 - Anterior
 - Most common
 - Posterior
 - Not usually associated with spinal cord compromise
 - Lateral
 - Offset of the lateral masses >2mm often associated with rotational deformity
 - Vertical/cranial settling
 - Result of bone & cartilage loss in the atlanto-axial & atlanto-occipital articulations

- Atlanto-axial stabilizers

- Normal predental space
5 Contour Lines

- Anterior vertebral line
- Posterior vertebral line
- Spinolaminar line
- Posterior spinous line
- Clivus-odontoid line
Anatomy

- 4 atlanto-axial articulations
- 4 types of subluxation
- Atlanto-axial stabilizers
 - Transverse ligament
 - Attaches to a small tubercle on the medial surface of the lateral mass of the atlas
 - Fascicles attach to the basion & posterior aspect of the body of the axis
 - Alar ligaments
 - Apical ligaments
- Normal predental space
Anatomy

- 4 atlanto-axial articulations
- 4 types of subluxation
- Atlanto-axial stabilizers
 - Transverse ligament
 - Alar ligaments
 - Connect the odontoid to tubercles on the medial surface of the occipital condyles
 - Apical ligaments
- Normal predental space

Ref: 15
Anatomy

- 4 atlanto-axial articulations
- 4 types of subluxation
- Atlanto-axial stabilizers
 - Transverse ligament
 - Alar ligaments
 - Apical ligaments
 - Extends from the odontoid tip to the anterior margin of the foramen magnum
 - Intimate with the superior fascicles of the transverse ligament
- Normal predental space
Anatomy

- 4 atlanto-axial articulations
- 4 types of subluxation
- Atlanto-axial stabilizers
- Normal predental space
 - <3mm in adults
 - <5mm in children
- Pitfalls
 - Technique
 - Patient position
 - Erosions
Atlanto-Axial Alignment

- **McRae line** from the basion to the opisthion: dens is below this line or only the tip is touching
 - Sensitivity: 43%\(^1\)
- Clark lines divide the odontoid process into 3 equal parts, abnormal if the anterior ring of the atlas is below the first 1/3
- Chamberlain line from the hard palate to the opisthion: dens normally projects <3mm above this line and >6.6mm = cranial settling
 - Variant: McGregor line hard palate to the most inferior aspect of the occipital curve: abnormal if dens projects > 4.5mm above the line
Atlanto-Axial Alignment

- McRae line from the basion to the opisthion: dens is below this line or only the tip is touching
- **Clark lines** divide the odontoid process into 3 equal parts, abnormal if the anterior ring of the atlas is below the first 1/3
 - Sensitivity: 83%\(^1\)
- Chamberlain line from the hard palate to the opisthion: dens normally projects <3mm above this line and >6.6mm = cranial settling
 - Variant: McGregor line hard palate to the most inferior aspect of the occipital curve: abnormal if dens projects > 4.5mm above the line
Atlanto-Axial Alignment

- McRae line from the basion to the opisthion: dens is below this line or only the tip is touching.
- Clark lines divide the odontoid process into 3 equal parts, abnormal if the anterior ring of the atlas is below the first 1/3.
- Chamberlain line from the hard palate to the opisthion: dens normally projects <3mm above this line and >6.6mm = cranial settling.
 - Variant: McGregor line upper surface of the hard palate to the most inferior aspect of the occipital curve: abnormal if dens projects > 4.5mm above the line.
Atlanto-Axial Alignment

- McRae line from the basion to the opisthion: dens is below this line or only the tip is touching.
- Clark lines divide the odontoid process into 3 equal parts, abnormal if the anterior ring of the atlas is below the first 1/3.
- Chamberlain line from the hard palate to the opisthion: dens normally projects <3mm above this line and >6.6mm = cranial settling.
- Variant: McGregor line hard palate to the most inferior aspect of the occipital curve: abnormal if dens projects >4.5mm above the line.
Atlanto-Axial Alignment

- **Redlund-Johnell**
 - Measures the distance between McGregor’s line and the midpoint of the inferior endplate of C2
 - Normals
 - Men: ≥ 34mm
 - Women: ≥ 29mm
 - Sensitivity: 61%\(^1\)

- **Ranawat**
 - Detects settling of C1 on C2
 - Measures the distance from the center of the pedicles of C2 to a line drawn between the midpoints of the anterior and posterior arches of C1
Atlanto-Axial Alignment

- **Redlund-Johnell**
 - Measures the distance between McGregor’s line and the midpoint of the inferior endplate of C2

- **Ranawat**
 - Detects settling of C1 on C2
 - Measures the distance from the center of the pedicles of C2 to a line drawn between the midpoints of the anterior and posterior arches of C1
 - Sensitivity: 71%¹
Rheumatoid Arthritis
Rheumatoid Arthritis

- Involves synovial joints and synovium of bursae
- Never involves the spine without involving the extremities
- Rarely involves the sacroiliac joints or lumbar spine
- Erosions
- Cervical subluxation³ (43-86%)
- Cranial settling
- Lack of bony proliferation in DDD
- Osteopenia
Rheumatoid Arthritis

- Involves synovial joints and synovium of bursae
- Never involves the spine without involving the extremities
- Rarely involves the sacroiliac joints or lumbar spine
- Erosions
 - Odontoid process
 - Spinous process “whittling”
 - Facet and uncovertebral
 - Discovertebral junction
 - Rare: fusion of apophyseal joints
- Cervical subluxation\(^3\) (43-86%)
- Cranial settling
- Lack of bony proliferation in DDD
- Osteopenia
Rheumatoid Arthritis

- Involves synovial joints and synovium of bursae
- Never involves the spine without involving the extremities
- Rarely involves the sacroiliac joints or lumbar spine
- Erosions
 - Cervical subluxation\(^3\) (43-86%)
 - Atlanto-axial subluxation (33%)
 - Subaxial subluxation (20-25%)
 - Basilar invagination (10-15%)
 - Rare: Posterior and rotatory atlanto-axial subluxations
- Cranial settling
- Lack of bony proliferation in DDD
- Osteopenia
 - Absent in “robust RA”
Cervical subluxations

- **Atlanto-axial subluxation**
 - C1-2 malalignment in flexion, reduces in extension
 - Laxity of the transverse ligament, major stabilizer of the atlanto-axial joint
 - Pannus & granulation tissue erodes & tears the transverse ligament
 - Pannus may prevent reduction in extension
 - Inflammation of the synovium of the odontoid process bursae also seen in psoriasis and ankylosing spondylitis
Cervical subluxations

- Atlanto-axial subluxation
- Atlanto-dental interval (predental space)
 - 3-6mm early instability, transverse ligament damage
 - >6mm alar ligaments also damaged
 - >9mm surgical, high correlation with neurological symptoms: paresthesia, paresis, muscle wasting, weakness, abnormal mobility, pain

Ref: 13
Boden et al. Rheumatoid arthritis of the cervical spine. A long term analysis with predictors of paralysis and recovery. *JBJS Sep 1993; 75 (9): 1282-97*

- 42/73 patients with C1-C2 or occipital-cervical arthrodesis
- **Posterior** atlanto-odontoid interval directly measures the spinal canal, better predictor
- Minimum diameter: 14mm
- Plain films: <14mm 97% PPV neurologic deficit
- <10mm unlikely to have neurological recovery post surgery
- >14mm complete motor recovery post surgery

Ref: 13
Cervical subluxations

- Atlanto-axial subluxation
- Atlanto-dental interval (predental space)
- Sub axial subluxation
 - Step ladder subluxations (10-20%)
 - Late manifestation of RA
 - Secondary to erosions at the facets and discovertebral joints

Ref: 17
Cervical subluxations

- Atlanto-axial subluxation
- Atlanto-dental interval (predental space)
- Sub axial subluxation
- Basilar invagination
 - Usually preceded by AAS
 - Anterior arch of C1 is abnormally adjacent to the body of C2
 - The clivus is intimate with the odontoid
 - Cranial migration of an eroded dens
 - Tip indents the medulla
 - Narrowing of the foramen magnum
 - Little pannus formation

Ref: 13
Juvenile Idiopathic Arthritis
Juvenile Idiopathic Arthritis

- Age of onset < 16 years
- Involves synovial joints and synovium of bursae
- Rare to occur in the spine without peripheral involvement
- Subtypes based on symptoms and the number of joints involved
 - Still Disease
 - Polyarticular arthritis
 - Pauciarticular (oligo)arthritis
- Differentiating JIA from the adult form
Juvenile Idiopathic Arthritis

- Age of onset < 16 years
- Involves synovial joints and synovium of bursae
- Rare to occur in the spine without peripheral involvement
- Subtypes based on symptoms and the number of joints involved
 - Still Disease
 - Systemic, larger joints
 - No gender predilection
 - No ocular pathology
 - Polyarticular arthritis
 - Pauciarticular (oligo)arthritis

Differentiating JIA from the adult form
Juvenile Idiopathic Arthritis

- Age of onset < 16 years
- Involves synovial joints and synovium of bursae
- Rare to occur in the spine without peripheral involvement
- Subtypes based on symptoms and the number of joints involved
 - Still Disease
 - Polyarticular arthritis
 - Greater than 5 joint in the first 6 months
 - Symmetric involvement
 - Girls > Boys
 - Cervical spine, TMJ, small joints of the hands and feet
 - Pauciarticular (oligo)arthritis
- Differentiating JIA from the adult form
Juvenile Idiopathic Arthritis

- Age of onset < 16 years
- Involves synovial joints and synovium of bursae
- Rare to occur in the spine without peripheral involvement
- Subtypes based on symptoms and the number of joints involved
 - Still Disease
 - Polyarticular arthritis
 - Pauciarticular (oligo)arthritis
 - Fewer than 5 joint in the first 6 months
 - Girls > Boys
 - Self limiting
 - Ocular manifestations
- Differentiating JIA from the adult form
Juvenile Idiopathic Arthritis

- Age of onset < 16 years
- Involves synovial joints and synovium of bursae
- Rare to occur in the spine without peripheral involvement
- Subtypes based on symptoms and the number of joints involved
- Differentiating JIA from the adult form
 - Lower incidence of neurological symptoms
 - Relatively late destruction of articular cartilage and bone
 - Growth disturbances
 - Ankylosis of the apophyseal joints
 - Micrognathia: short antegonial notch
Juvenile Idiopathic Arthritis

- Erosions
 - Odontoid process
- Cranial settling and basilar invagination
- Cervical subluxations
- DDD at unfused levels
- Growth disturbances

Courtesy of T. Hughes
Juvenile Idiopathic Arthritis

- Erosions
 - Odontoid process
 - Fusion of the apophyseal joints
- Cranial settling and basilar invagination
- Cervical subluxations
- DDD at unfused levels
- Growth disturbances

Courtesy of T. Hughes
Juvenile Idiopathic Arthritis

- Erosions
- Cranial settling and basilar invagination
- Cervical subluxations
- DDD at unfused levels
- Growth disturbances
Juvenile Idiopathic Arthritis

- Erosions
- Cranial settling and basilar invagination
- Cervical subluxations
 - Craniocervical
 - Atlanto-axial
 - Sub axial “step ladder”
 - May be rotary or anteroposterior
- DDD at unfused levels
- Growth disturbances

22yo F with JIA
Juvenile Idiopathic Arthritis

- Erosions
- Cranial settling and basilar invagination
- Cervical subluxations
 - Craniocervical
 - Atlanto-axial
 - Sub axial “step ladder”
 - May be rotary or anteroposterior
- DDD at unfused levels
- Growth disturbances

22 yo F with JIA
Juvenile Idiopathic Arthritis

- Erosions
- Cranial settling and basilar invagination
- Cervical subluxations
- DDD at unfused levels
 - Disc calcifications
 - Disc space narrowing
- Growth disturbances

37 yo F with JIA. Courtesy of T. Hughes
Juvenile Idiopathic Arthritis

- Erosions
- Cranial settling and basilar invagination
- Cervical subluxations
- DDD at unfused levels
- Growth disturbances
 - Vertebrae are small, tall, and narrow in the AP dimension
 - Mandibular hypoplasia

Courtesy of T. Hughes
Seronegative Spondyloarthropathies
Seronegative Spondyloarthropathy

- Ankylosing Spondylitis
- Psoriatic Arthritis
- Reiter Disease
- Enteropathic Arthritis
Seronegative Spondyloarthropathy

- RA negative, ANA in 10%, HLA B27 positive
- Normal bone density
- Preservation of disk space
- Fusion of apophyseal joints
- Erosions
- Syndesmophytes, enthesis
- Atlanto axial subluxation/cervical subluxations
- Advanced DDD in unfused levels due to increased stress
Seronegative Spondyloarthropathy

- **Ankylosing Spondylitis**
 - Starts in the lumbosacral spine and progresses superiorly
 - Squaring of the vertebral bodies (shiny corners): sclerotic repair of marginal enthesitis
 - Bridging syndesmophytes: ossification of Sharpey’s fibers and annulus fibrosus
 - Involvement of facets can progress to fusion
 - Erosion of anterior aspect of the vertebral bodies esp. lower cervical spine
Seronegative Spondyloarthritis

- Psoriasis/Reiter's
 - Para vertebral bulky ossification more than thin bridging syndesmophytes
 - Lateral more than AP, asymmetric
 - Fluffy periostitis secondary to inflammatory enthesopathy
 - Apophyseal disease & squaring of vertebrae less frequent than AS

- JIA subset with features of psoriasis
Gout
Gout

- **Primary (95%)**
 - Inherited or idiopathic hyperuricemia
 - Overproducer <<< Under excretor

- **Secondary (5%)**
 - Due to other acquired disorders
 - Overproduction or Under excretion
Gout

- Tophus: urate crystals and host reaction
- Usually have findings of peripheral disease
- Present with symptoms of cord or root compression
- Normal bone density
- Periarticular tophi with juxta-articular erosions rare in the spine
- Erosive arthritis centered on the disc
- Tophus on MRI

Ref: 11
Gout

- Tophus: urate crystals and host reaction
- Usually have findings of peripheral disease
- Present with symptoms of cord or root compression
- Normal bone density
 - Hyperostosis of involved levels
 - Osteophytes
- Periarticular tophi with juxta-articular erosions rare in the spine
- Erosive arthritis centered on the disc
- Tophus on MRI

Ref: 11
Gout

- Tophus: urate crystals and host reaction
- Usually have findings of peripheral disease
- Present with symptoms of cord or root compression
- Normal bone density
- Periarticular tophi with juxta-articular erosions rare in the spine
- Erosive arthritis centered on the disc
 - Involves 1-2 levels
 - Disc space narrowing
 - Endplate erosion
 - Prevertebral soft tissue mass

Ref: 11
Gout

- Tophus on MRI
 - Low on T1
Gout

- **Tophus on MRI**
 - Low on T1
 - Heterogeneous on T2/STIR
 - High water content of tophi
 - Calcifications, fibrous tissue, urate crystals

Ref: 11
Gout

- **Tophus on MRI**
 - Low on T1
 - Heterogeneous on T2/STIR
 - Variable enhancement w/o enhancement of the marrow
 - Vascularized reactive tissue within the tophus
 - Granulation tissue around the tophus

Ref: 11
Calcium Pyrophosphate Deposition
CPPD

- Idiopathic
- Hereditary
- Secondary
 - Hemochromatosis
 - Wilson’s
 - Hyperparathyroidism
 - Hypothyroidism
 - Hypophosphatiasis
 - Hypomagnesemia
 - Rheumatoid Arthritis
CPPD

- **Asymptomatic Chondrocalcinosis**
 - Majority of cases
 - Pseudo gout: less pain than gout
 - Predilection for large joint as oppose to small joints
 - Can have rapid onset similar to acute gouty attack
 - Trauma, surgery, or illness may incite symptoms

- **Chronic CPPD Arthropathy**
 - Subchondral cyst formation
 - Mimic neuropathic ostearthropathy
 - Rapidly progressive joint destruction
 - Mimics osteoarthritis
 - Usual features of OA
 - Possibly secondary to alter biomechanics
 - Involves less common joints for OA (weight bearing joints)
 - Mimics Rheumatoid Arthritis
 - Acute synovitis & chronic arthritis
 - Asymmetric distribution
CPPD

- Involves cervical, thoracic, and lumbar spine
- Crystal deposition
- Plain films, CT vs. MR
- Complications
CPPD

- Involves cervical, thoracic, and lumbar spine
- Crystal deposition
 - Disc- linear, loss of height
 - Ligamentum flavum- spinal stenosis
 - Facet joints- erosions, subchondral cysts
 - Globular perivertebral deposits
 - Synovium/ ligaments- crowned dens
- Plain films, CT vs. MR
- Complications

Case Conf Archives: thick posterior longitudinal ligament, transverse ligament and amorphous calcifications
CPPD

- Involves cervical, thoracic, and lumbar spine
- Crystal deposition
- Plain films, CT vs. MR
 - CT is the gold standard
 - Difficult to see on plain radiography
 - Not seen on MR unless globular
 - Low signal on T1WI
 - Heterogeneous signal on T2WI

- Complications
CPPD

- Involves cervical, thoracic, and lumbar spine
- Crystal deposition
- Plain films, CT vs. MR
- Complications
 - Destructive, hypertrophic arthropathy with osseous fragmentation
 - Myelopathy due to compression from tumoral masses, thickened ligaments
 - Type II dens fracture with little to no trauma possibly related to bone weakening from erosions & subchondral cyst formation
CPPD

- Distinguishing from Hydroxyapatite Deposition Disease (HADD)
- Sudden onset of neck pain and stiffness
- Self limited, resolves in 1-2 weeks
- Focal calcification in the longus colli muscles (C1-C2)
- Prevertebral/retropharyngeal STS
- Reactive inflammation in the underlying disc
- Fluid extending along fascial planes
 - Differentiated from a retropharyngeal abscess which enhances peripherally and is rounded in appearance
Crown dens syndrome

“Neck pain caused by calcified lesions surrounding the top and sides of the odontoid process in a crown-or halo-like distribution”

- Older females
- Calcification of the transverse and alar ligaments
- Often only spinal manifestation, look for peripheral disease
POST TEST

1. Juvenile Idiopathic Arthritis
2. Rheumatoid Arthritis
3. Seronegative Spondyloarthropathy
4. Gout
5. CPPD
POST TEST

1. Juvenile Idiopathic Arthritis - D
2. Rheumatoid Arthritis
3. Seronegative Spondyloarthropathy
4. Gout
5. CPPD
POST TEST

1. Juvenile Idiopathic Arthritis
2. Rheumatoid Arthritis -B
3. Seronegative Spondyloarthropathy
4. Gout
5. CPPD
POST TEST

1. Juvenile Idiopathic Arthritis
2. Rheumatoid Arthritis
3. Seronegative Spondyloarthropathy – A/E
4. Gout
5. CPPD
POST TEST

1. Juvenile Idiopathic Arthritis
2. Rheumatoid Arthritis
3. Seronegative Spondyloarthropathy
4. Gout - F
5. CPPD
POST TEST

1. Juvenile Idiopathic Arthritis
2. Rheumatoid Arthritis
3. Seronegative Spondyloarthropathy
4. Gout
5. CPPD - C
Thank You!
References

4. Ross et al. Diagnostic Imaging: Spine
17. Albert et al. Cervical spine surgery challenges: Diagnosis and Management