

Postoperative spine

And how to make it (slightly) less challenging

Wilson Lin, MD Musculoskeletal Radiology Fellow University of California, San Diego

Objectives

- History
- 3 main goals of spine surgery
 - Decompression
 - Stabilization/Fusion
 - Alignment
- Surgical techniques
- Hardware and materials
- Postoperative Imaging
- Complications

History

1550 B.C.

 Ancient Egyptians documented spine fractures causing paralysis Various physicians developed traction or spinal manipulation devices

460-337 B.C.

 Hippocrates treated spine fractures using different patient positioning

Good. Journal of the Spinal Research Foundation. 2010; 5(1): 19-25.

Introduction

Hardware

Techniques

Imaging

History

1829 - 1888

 Dr. Alban Smith removed bone fragments and spinal tumors/TB for decompression

1940s

 Standard of care: posterior fusion and cast immobilization

1914

 Dr. Russel Hibbs performed first spinal fusion for scoliosis

www.srs.org

Introduction

Hardware

Techniques

Imaging

Indications for spine surgery

Introduction Hardware Techniques Imaging Complications

3 main objectives of spine surgery

- Surgical technique/approach and selection of hardware/graft depends on:
 - Objectives of surgery:

Decompression
Stabilization/fusion
Alignment

Site-specific considerations

Introduction

Hardware

Techniques

Imaging

Screws

- Functions:
 - Fix fractures
 - Attach fusion plates to bone

Hardware

Connect with rods to form rod-screw constructs

Techniques

Imaging

Partially threaded screw

Introduction

cat.vet.upenn.edu

Complications

Cortical screw

Types of screws

Classified by placement site or function

- Pedicle screw
- Laminar screw
- Lateral mass screw
- Facet screw
- Lag screw

Introduction	Hardware	Techniques	Imaging	Complications

Screw placement guidelines

- 1. Should not breach medial cortex into neural foramen or spinal canal
- 2. Should not protrude anterior to vertebral body
- 3. Should not breach endplate

Introduction

Hardware

Techniques

Imaging

Pedicle screw

Indiamart.com

Introduction	Hardware	Techniques	Imaging	Complications
--------------	----------	------------	---------	---------------

Laminar screw

Introduction

Hardware

Techniques

Imaging

Lateral mass screw

Introduction

Hardware

Techniques

Imaging

Facet screw

Lieberman I.H., Hu X. (2014) Minimally Invasive Facet Screw Fixation. Minimally Invasive Spine Surgery. Springer, New York, NY

Introduction

Hardware

Techniques

Imaging

Facet screw

Lieberman I.H., Hu X. (2014) Minimally Invasive Facet Screw Fixation. Minimally Invasive Spine Surgery. Springer, New York, NY

Introduction Hardware Techniques Imaging Complications
--

Lag screw

Medicalexpo.com

Introduction

Hardware

Techniques

Imaging

Wires

- Metallic wires traditionally used as primary or supplementary fixation
- Tension-band principle provide compressive force
- Mostly replaced by newer fusion techniques

Introduction

Hardware

Techniques

Imaging

Plates

- Allow fixation and are anchored to bone by screws
- Screws should be 2 mm from the endplate
- Site-specific:
 - Anterior cervical spine (most common)
 - Occipitocervical junction posteriorly
 - Less commonly, thoracolumbar spine

Kani et al. Skel Rad. 2018;47(1):7-17

Introduction	Hardware	Techniques	Imaging	Complications

Harrington rods

- 1950s Harrington hook and rod
 - Rod with hooks attached at top and bottom for distraction
 - Originally treating paralytic scoliosis from poliomyelitis
 - Shortcomings
 - Pull-out of hooks
 - Negative influence on sagittal contour of patient ("flat-back syndrome")

Introduction

Hardware

Techniques

Imaging

Rods and rod-wire/screw constructs

- 1973: First segmental instrumentation by Edwardo Luque
 - Two-rod system with sublaminar wires at each level
 - Did not address rotational component
- 1980: Subsequent systems allowed for correction for rotation and cross-linking for additional stability

Bonepit.com Slone et al. Radiographics. 1993;13(3):521-543

Introduction

Hardware

Techniques

Imaging

Modern rod-screw constructs

Introduction

Hardware

Techniques

Imaging

Fusion cages/grafts

- Made of: various materials, including: polyetheretherketone (PEEK), titanium, carbon fiber, ceramics, etc.
- Interbody spacers
 - Ramps vs cages in C-spine (filled with bone graft)
 - Goals:
 - Promote fusion
 - Maintain alignment
 - Provide support and restore height
 - Placement: radiopaque marker should be 2 mm anterior to posterior cortex of adjacent vertebral body

Bone grafts

- Facilitate fusion
- Autograft
 - Sites include: Local, iliac crest, ribs/fibula
 - Complication: donor site morbidity, limited quantity
- Allograft: cadaveric donation
 - Drawback: infection transmission

Introduction

Hardware

Techniques

Imaging

Bone graft substitutes

- May be used alone or supplement bone grafts
- Recombinant bone morphogenic protein (r-BMP)
 - Supplemental use with bone graft improves fusion
 - Complications have tempered enthusiasm for its use
- Demineralized bone matrix (DBM)
 - Derived from demineralized cadaveric bone
 - Similar disease transmission as allograft
 - Demineralized technique not regulated -
 - > variability

Google.com

Wright.com

Introduction

Hardware

Techniques

Imaging

Decompression surgery

- Relieve mass effect on spinal cord and/or exiting nerve roots
 - Potential culprits: Bone, disc, ligaments, facet joints, cyst, epidural mass lesion
- Multiple techniques:
 - Laminotomy
 - Laminectomy
 - Facetectomy
 - Laminoplasty
 - Discectomy

Introduction Hardware Techniques Imagir	ng Complications
---	------------------

Laminotomy and Laminectomy

- Laminotomy = removal of part of lamina
- Laminectomy = complete removal of lamina and if bilateral, also of spinous process
- Facetectomy = removal of inferior facet and joint capsule
- Foraminotomy = removal of medial half of inferior facet
- Each of these can be used as access to remove offending structures (i.e. disc, cyst, facet capsule hypertrophy)

Introduction

Techniques

Imaging

Laminoplasty

- 1. Cut one lamina, partially cut the other lamina
- 2. Elevate laminar fragment to widen spinal canal
- 3. Stabilize with a plate

Introduction

Hardware

Techniques

Imaging

Stabilization and Alignment surgery

- Objectives:
 - Stabilization
 - Maintain/improve alignment
 - Replace removed structures
 - Eliminate pain
- Stabilization achieved by:
 - Rigid instrumentation
 - Interbody implants
 - Vertebral body implants
- Alignment achieved by:
 - Distraction and compression instrumentation
 - Segmental instrumentation

Introduction

Hardware

Posterior fusion

- Fusion of posterior elements
- Most commonly used in occipitocervical junction and thoracolumbar spine
- Often performed after posterior decompression to maintain stability
- Performed with:
 - Rod-screw constructs,
 - Posterolateral fusion with bone graft (between transverse processes or lamina)

Introduction

Hardware

Techniques

Imaging

Interbody fusion

- Fusion of the anterior spinal column
- Nomenclature of interbody fusion is based on approach
 - Anterior approach in the cervical spine (ACDF)
 - 5 main approaches in the lumbar spine

Mobbs et al. Journal of Spine Surgery. 2015;1(1):2-18

Introduction	Hardware	Techniques	Imaging	Complications
introduction	naruware	iechniques	imaging	complications

Posterior lumbar interbody fusion (PLIF)

- Either midline or paramedian, followed by b/l laminectomy or laminotomy
- Usually 2 small grafts oriented sagittal
- Advantages:
 - surgeon comfort
 - convenient 360 degree fusion
- Disadvantages:
 - retraction of neural structures
 - damage to paraspinal and posterior ligamentous structures

Mobbs et al. Journal of Spine Surgery. 2015;1(1):2-18

Introduction	Hardware	Techniques	Imaging	Complications

Posterior lumbar interbody fusion (PLIF)

Introduction

Hardware

Techniques

Imaging

Transforaminal lumbar interbody fusion (TLIF)

- Either midline or paramedian approach, followed by u/l laminectomy and inferior facetectomy
- Oblique graft position, can be elongated
- Advantages:
 - preserve ligamentous structures
 - less retraction on neural structures
- Disadvantages:
 - paraspinal injury

Introduction Hardware Techniques Imaging Complications

Transforaminal lumbar interbody fusion (TLIF)

Introduction

Hardware

Techniques

Imaging

Anterior lumbar interbody fusion (ALIF)

- Retroperitoneal approach
- Graft is round, usually anterior, and traditionally has interference screw
- Advantages:
 - direct visualization of disc to allow maximum implant size
 - Spares paraspinal muscles
- Disadvantages:
 - injury to vessels and anterior structures, limited at L2-L3 and L3-L4

Mobbs et al. Journal of Spine Surgery. 2015;1(1):2-18

Introduction Hardware Techniques Imaging Complications

Anterior lumbar interbody fusion (ALIF)

Introduction

Hardware

Techniques

Imaging

Lateral lumbar interbody fusion (XLIF)

- Transpsoas approach
- Rectangular graft, horizontal in position
- Advantages:
 - Quicker postop mobilization
 - Good disc clearance
 - High fusion rate
- Disadvantages:
 - Lumbar plexus injury
 - Psoas or visceral injury

Complications

Mobbs et al. Journal of Spine Surgery. 2015;1(1):2-18

ng

Introduction	Hardware	Techniques	Imagi

Lateral lumbar interbody fusion (XLIF)

Introduction

Hardware

Techniques

Imaging

Oblique lumbar interbody fusion (OLIF)

- Anterior to psoas approach
- Otherwise similar to XLIF

Introduction

Hardware

Techniques

Imaging

Anterior cervical discectomy and fusion (ACDF)

- Most commonly performed procedure for degenerative cervical disease
- Transoral-transpharyngeal, retropharyngeal techniques
- Discectomy, then fusion with interbody spacer
 - Spacer may be a ramp (solid) or cage (filled with bone graft)
 - May be augmented with plating system
- Corpectomy may be necessary

Introduction

Hardware

Techniques

Imaging

Dynamic posterior stabilization

- Provide stabilization but distribute stress throughout segments to lower risk of adjacent segment degeneration
- Pedicle screws connected by various materials, many which are not radiopaque, that still allow some motion

Rutherford et al. Radiographics. 2007;27(6):1737-1749

Introduction	Hardware	Techniques	Imaging	Complications
--------------	----------	------------	---------	---------------

Motion-preserving instrumentation

Total disc arthroplasty

- Indications (Charité):
 - Degenerative disease at one level
 - Spondylolisthesis of 3 mm or less
- Contraindications
 - Demineralized bones
 - Lumbar vertebral stenosis
 - Isolated radicular syndrome

Introduction Hardware	Techniques	Imaging	Complications
-----------------------	------------	---------	---------------

Motion-preserving instrumentation

Total disc arthroplasty

- Design consists of 2 metallic plates attached to vertebral bodies with a central inlay, either by ball-socket mechanism or held by compression (Charité)
- Requires anterior approach
- Advantages:
 - decreased hospitalization, OR time and blood loss
 - Preserves flexion and extension to decrease adjacent segment disease

Introduction Hardware Te	chniques Imagi	ng Complications
--------------------------	----------------	------------------

Total disc arthroplasty

Introduction

Hardware

Techniques

Imaging

Interspinous distraction devices

- Indication: position-dependent intermittent claudication from spinal stenosis
- Keep spine in flexed position
- Decreases complications but increases revision rates

Murtagh et al. Radiology. 2011;260(2):317-330.

Introduction	Hardware	Techniques	Imaging	Complications
--------------	----------	------------	---------	---------------

Radiographs

- Alignment
- Hardware position and fracture
- Bone-implant interface
- Dynamic imaging for instability

Introduction Hardware Techniques Imaging Complication

- Targeted exam, not recommended for routine follow-up
- Assess hardware, fusion, degenerative disease, recurrent disease
- Metal suppression
 - High-peak voltage
 - High-tube current
 - Narrow collimation
 - Thin sections during acquisition

MRI

- Assess for complications:
 - Infection
 - Dural tear
 - Compressive lesion
 - Postoperative collection
 - Fibrosis (with contrast)
- Metal suppression
 - STIR
 - Swap phase and frequency encoding directions
 - Increase bandwidth
 - decrease voxel size

Additional modalities

- Ultrasound: postoperative collections
- Nuclear medicine
 - Pseudarthrosis
 - infection

Introduction

Hardware

Techniques

Imaging

- Wrong level
- Improper implant placement
- Dural tear
- Hematoma/postoperative collection
- Injury to adjacent structures
- Infection
- Hardware-related fracture

Introduction

Hardware

Techniques

Imaging

Rutherford et al. Radiographics. 2007;27(6):1737-1749

L4 burst fx

Wrong level

Introduction

Hardware

Techniques

Imaging

Several days s/p resection of OPLL

Epidural hematoma

Introduction

Hardware

Techniques

Imaging

5 days after evacuation of epidural hematoma

Dural tear/postoperative collection

Introduction

Hardware

Techniques

Imaging

Injury to adjacent structures (internal iliac artery)

Introduction

Hardware

Techniques

Imaging

Baseline

Few months later

Hardware failure

Hardware

Techniques

Imaging

Early complications

S/p TLIF

- Infection
- Pseudoarthrosis
- Hardware loosening, migration, or failure
- Adjacent segment degeneration
- Failed back surgery syndrome
 - Peridural fibrosis
 - Arachnoiditis
 - Recurrent disc pathology

Introduction

Hardware

Techniques

Imaging

S/p microdiscectomy

Young et al. RadioGraphics 2007; 27:775–789

Baseline

6 month follow-up

Infection

Introduction

Hardware

Techniques

Imaging

2 years after lumbosacral fusion

Pseudoarthrosis

Hardware

Techniques

Imaging

Postop

6 months later

Introduction

Hardware

Techniques

Imaging

Immediate postop

9 months later

Introduction

Hardware

Techniques

Imaging

S/p PLIF

Rutherford et al. Radiographics. 2007;27(6):1737-1749

Immediate postop

2.5 years later

Adjacent level degeneration

Introduction

Hardware

Techniques

Imaging

S/p L2 laminectomy and microdiscectomy

Preop

7 months postop

Recurrent disc herniation

Introduction

Hardware

Techniques

Imaging

Summary

- Understand 3 objectives of spinal surgery
 - Decompression
 - Fusion
 - Alignment
- Reviewed current hardware and basic surgical approaches
- Familiarized with early and late complications of spine surgery

- Allouni, A. K., W. Davis, K. Mankad, J. Rankine, and I. Davagnanam. "Modern Spinal Instrumentation. Part 2: Multimodality Imaging Approach for Assessment of Complications." *Clinical Radiology* 68, no. 1 (January 2013): 75–81. Baber, Zafeer, and Michael A. Erdek.
 "Failed Back Surgery Syndrome: Current Perspectives." *Journal of Pain Research* 9 (2016): 979–87. https://doi.org/10.2147/JPR.S92776.
- Babu, Maya A., Jean-Valery C. Coumans, Bob S. Carter, William R. Taylor, Ekkehard M. Kasper, Ben Z. Roitberg, William E. Krauss, and Clark C. Chen. "A Review of Lumbar Spinal Instrumentation: Evidence and Controversy." *Journal of Neurology, Neurosurgery, and Psychiatry* 82, no. 9 (September 2011): 948–51. https://doi.org/10.1136/jnnp.2010.231860.
- Davis, W., A. K. Allouni, K. Mankad, D. Prezzi, T. Elias, J. Rankine, and I. Davagnanam. "Modern Spinal Instrumentation. Part 1: Normal Spinal Implants." *Clinical Radiology* 68, no. 1 (January 2013): 64–74. https://doi.org/10.1016/j.crad.2012.05.001.
- Eisenmenger, Laura, Aaron J. Clark, and Vinil N. Shah. "Postoperative Spine: What the Surgeon Wants to Know." *Radiologic Clinics of North America* 57, no. 2 (March 2019): 415– 38. https://doi.org/10.1016/j.rcl.2018.10.003.
- Good, Christopher. "Evolution in the Treatment of Spinal Deformity and Spinal Instrumentation." *Journal of the Spinal Research Foundation* 5, no. 1 (Spring 2010): 19–25.
- Ha, Alice S., and Jonelle M. Petscavage-Thomas. "Imaging of Current Spinal Hardware: Lumbar Spine." *AJR. American Journal of Roentgenology* 203, no. 3 (September 2014): 573– 81. https://doi.org/10.2214/AJR.13.12217.

- Kani, Kimia Khalatbari, and Felix S. Chew. "Anterior Cervical Discectomy and Fusion: Review and Update for Radiologists." *Skeletal Radiology* 47, no. 1 (January 2018): 7–17. https://doi.org/10.1007/s00256-017-2798-z.
- Lieberman, I.H., and X. Hu. "Minimally Invasive Facet Screw Fixation." In *Minimally Invasive Spine Surgery*, 141–49. Springer, New York, NY, 2014.
- Maruyama, Toru, and Katsushi Takeshita. "Surgical Treatment of Scoliosis: A Review of Techniques Currently Applied." *Scoliosis* 3, no. 1 (April 18, 2008): 6. https://doi.org/10.1186/1748-7161-3-6.
- Mobbs, Ralph J., Kevin Phan, Greg Malham, Kevin Seex, and Prashanth J. Rao. "Lumbar Interbody Fusion: Techniques, Indications and Comparison of Interbody Fusion Options Including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF." *Journal of Spine Surgery (Hong Kong)* 1, no. 1 (December 2015): 2–18. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05.
- Murtagh, Ryan D., Robert M. Quencer, Antonio E. Castellvi, and James J. Yue. "New Techniques in Lumbar Spinal Instrumentation: What the Radiologist Needs to Know." *Radiology* 260, no. 2 (August 2011): 317–30. https://doi.org/10.1148/radiol.11101104.
- Murtagh, Ryan D., Robert M. Quencer, Dan S. Cohen, James J. Yue, and Evelyn L. Sklar. "Normal and Abnormal Imaging Findings in Lumbar Total Disk Replacement: Devices and Complications." *Radiographics: A Review Publication of the Radiological Society of North America, Inc* 29, no. 1 (February 2009): 105–18. https://doi.org/10.1148/rg.291075740.
- Nouh, Mohamed Ragab. "Spinal Fusion-Hardware Construct: Basic Concepts and Imaging Review." World Journal of Radiology 4, no. 5 (May 28, 2012): 193–207.

- Ortiz, A. Orlando, Alexandre de Moura, and Blake A. Johnson. "Postsurgical Spine: Techniques, Expected Imaging Findings, and Complications." *Seminars in Ultrasound, CT, and MR* 39, no. 6 (December 2018): 630–50. https://doi.org/10.1053/j.sult.2018.10.017.
- Petscavage-Thomas, Jonelle M., and Alice S. Ha. "Imaging Current Spine Hardware: Part 1, Cervical Spine and Fracture Fixation." *AJR. American Journal of Roentgenology* 203, no. 2 (August 2014): 394–405. https://doi.org/10.2214/AJR.13.12216.
- Rutherford, Elizabeth E., Linda J. Tarplett, Evan M. Davies, John M. Harley, and Leonard J. King. "Lumbar Spine Fusion and Stabilization: Hardware, Techniques, and Imaging Appearances." *Radiographics: A Review Publication of the Radiological Society of North America, Inc* 27, no. 6 (December 2007): 1737–49. https://doi.org/10.1148/rg.276065205.
- Slone, R. M., M. MacMillan, and W. J. Montgomery. "Spinal Fixation. Part 1. Principles, Basic Hardware, and Fixation Techniques for the Cervical Spine." *Radiographics: A Review Publication of the Radiological Society of North America, Inc* 13, no. 2 (March 1993): 341–56. https://doi.org/10.1148/radiographics.13.2.8460224.
- ———. "Spinal Fixation. Part 3. Complications of Spinal Instrumentation." Radiographics: A Review Publication of the Radiological Society of North America, Inc 13, no. 4 (July 1993): 797–816. https://doi.org/10.1148/radiographics.13.4.8356269.
- Slone, R. M., M. MacMillan, W. J. Montgomery, and M. Heare. "Spinal Fixation. Part 2. Fixation Techniques and Hardware for the Thoracic and Lumbosacral Spine." *Radiographics: A Review Publication of the Radiological Society of North America, Inc* 13, no. 3 (May 1993): 521–43. https://doi.org/10.1148/radiographics.13.3.8316661.

- "Spinal Fusion Surgery: A Historical Perspective." Accessed April 6, 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107724/.
- Young, Phillip M., Thomas H. Berquist, Laura W. Bancroft, and Jeffrey J. Peterson. "Complications of Spinal Instrumentation." *Radiographics: A Review Publication of the Radiological Society of North America, Inc* 27, no. 3 (June 2007): 775–89. https://doi.org/10.1148/rg.273065055.